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ABSTRACT

Embedding learning is an important technique in deep recommen-

dation models to map categorical features to dense vectors. How-

ever, the embedding tables often demand an extremely large number

of parameters, which become the storage and efficiency bottlenecks.

Distributed training solutions have been adopted to partition the

embedding tables into multiple devices. However, the embedding

tables can easily lead to imbalances if not carefully partitioned. This

is a significant design challenge of distributed systems named em-

bedding table sharding, i.e., how we should partition the embedding

tables to balance the costs across devices, which is a non-trivial

task because 1) it is hard to efficiently and precisely measure the

cost, and 2) the partition problem is known to be NP-hard. In this

work, we introduce our novel practice in Meta, namely AutoShard,

which uses a neural cost model to directly predict the multi-table

costs and leverages deep reinforcement learning to solve the parti-

tion problem. Experimental results on an open-sourced large-scale

synthetic dataset and Meta’s production dataset demonstrate the

superiority of AutoShard over the heuristics. Moreover, the learned

policy of AutoShard can transfer to sharding tasks with various

numbers of tables and different ratios of the unseen tables without

any fine-tuning. Furthermore, AutoShard can efficiently shard hun-

dreds of tables in seconds. The effectiveness, transferability, and

efficiency of AutoShard make it desirable for production use. Our

algorithms have been deployed in Meta production environment. A

prototype is available at https://github.com/daochenzha/autoshard
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1 INTRODUCTION

Embedding learning has become an important technique for mod-

eling categorical features in deep recommendation models [37]. It

maps sparse categorical features into dense vectors by performing

embedding lookup in embedding tables. The learned vectors are

then used for complex feature interactions and can greatly help us

improve the prediction results (e.g., DeepFM [4], AutoInt [29], and

deep learning recommendation model (DLRM) [25]).

However, industrial recommendation models often demand an

extremely large number of parameters for embedding tables, which

become the storage and efficiency bottlenecks [38]. A typical ex-

ample is YouTube Recommendation Systems [5], where a single

categorical feature contains tens of millions of video IDs, which

leads to gigantic embedding tables. The ultra-large embedding ta-

bles also result in training efficiency problems. For instance, more

than 48% of the operation kernel time is spent on embedding tables

in a Meta production model (see Figure 2 for the breakdown). Simi-

lar observations are also reported in [2], showing that embedding

table sizes have a significant impact on the training throughput. The

memory and efficiency requirements motivate the distributed train-

ing solutions, where model-parallelism is exploited to partition and

feed the embedding tables into multiple devices [1, 2, 9, 24, 25, 38].

The embedding lookup for a certain index will then be performed

by querying the device that actually holds the corresponding table.

While the model-parallelism enables training models with very

large embedding sizes, it poses a significant design challenge named

embedding table sharding, i.e., how we should partition the embed-

ding tables across devices. Figure 1 presents an illustrative example

of why optimizing the sharding can significantly accelerate the

training. If not carefully partitioned (left-hand side of Figure 1), the

tables could lead to imbalances among GPUs, where all the GPUs

https://github.com/daochenzha/autoshard
https://doi.org/10.1145/3534678.3539034
https://doi.org/10.1145/3534678.3539034
https://doi.org/10.1145/3534678.3539034


KDD ’22, August 14–18, 2022, Washington, DC, USA Daochen Zha et al.

15

5

1

2

3

4

5

6

7

8

9

1 2 3

104 5 6

7 8 9

Bot t l eneck

Naive Shar ding

10

10

1

2

3

4

5

6

7

8

9

1 5 9

102 6 7

3 4 8

Balanced Shar ding

Figure 1: An illustrative sharding problem of partitioning 9

embedding tables across 3 devices with naive sharding and

balanced sharding. Blue blocks are embedding tables, whose

numbers indicate the costs measured by the operation execu-

tion time. Purple blocks are shards, whose costs are usually

smaller than the sum of the table costs within the shard due

to parallelism (e.g., 5 < 1+2+3 and 10 < 4+5+6). The slowest

shard will become the bottleneck since the other shards have

to wait until it finishes. Optimizing the naive sharding in

this task can achieve 1.5X speedup (i.e., 15/10 = 1.5).

0% 31% 64% 100%

Embedding Operations Other  Operations Other  Cost (communication, tensor  copy, etc.)

Figure 2: A breakdown of the computation time of one iter-

ation of a Meta production model. Embedding operations

account for 31% of the iteration time and 48% of the total

operation execution time in GPU (i.e., 0.31 / 0.64 ≈ 48%).

are forced to wait for the slowest GPU1. In contrast, a balanced

sharding (right-hand side of Figure 1) can significantly accelerate

the embedding operation by reducing the waiting time. Motivated

by this, we investigate the following research question: given an

arbitrary set of embedding tables, how can we shard the embedding

tables to balance the costs across devices?

It is non-trivial to achieve this goal because of two major chal-

lenges. First, we need to efficiently estimate the cost (i.e., the kernel

time of the embedding operators), which serves as the optimization

objective. Unfortunately, the cost is hard to estimate. Unlike many

other partition problem, the total cost of multiple tables in a shard

is not the sum of the single table costs within the shard due to

parallelism and operator fusion. As a result, it is hard to estimate

the cost without actually running the operators; however, running

the operators is computationally expensive. Second, we need an

efficient algorithm to solve the partition problem, which is known

to be NP-hard2. The ever-increasing number of embedding tables

makes it infeasible to adopt a brute-force approach, i.e., iterating

through all the possible sharding plans and outputting the best one.

For practical use, the sharding algorithm is expected to propose an

effective sharding plan for hundreds of tables in a reasonable time.

To address the above challenges, we present our novel practice

in Meta, namely AutoShard, based on cost modeling and deep rein-

forcement learning (RL). To efficiently estimate the cost, we develop

1In this work, we focus on embedding table sharding among GPU devices when
the tables fit on the GPU memory. We note that system memory [12], non-volatile
memory [11], and SSD [38] can also be used to store tables at the cost of decreased
throughput [2]. We defer hybrid sharding strategies for these scenarios to future work.
2https://en.wikipedia.org/wiki/Partition_problem
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Figure 3: A typical recommendation model with dense and

sparse features [25]. The system exploits a combination of

model parallelism (i.e., the embedding tables are partitioned

into different devices) and data parallelism (i.e., replicating

MLPs on each device and partitioning training data into dif-

ferent devices). The embedding vectors obtained from em-

bedding lookup are appropriately sliced and transferred to

the target devices through an all-to-all communication.

a neural cost model, which is trained with regression to the multi-

table cost data collected from running micro-benchmarks on GPUs.

To optimize the partitioning, we formulate the table sharding as a

Markov decision process (MDP), where in each step, we allocate

one table to a shard. The process ends when all the tables are allo-

cated and we obtain a reward indicating the sharding quality at the

final step. Then we leverage deep RL to learn an LSTM policy to

optimize the sharding strategy. The cost model and the sharding

policy are jointly trained towards convergence. In summary, we

make the following contributions:

• Provide an in-depth analysis of the main influential factors

of the cost of embedding operators via a case study on an

modern embedding bag implementation from FBGEMM [16].

• Propose AutoShard for embedding table sharding. It uses

neural cost model to predict the kernel time of the operator

and leverages deep RL to solve the partition problem. It can

propose an effective sharding plan for hundreds of tables in

seconds with a single CPU core.

• Conduct extensive experiments on an open-sourced large-

scale synthetic dataset (for reproducibility) and Meta’s pro-

duction dataset. AutoShard significantly outperforms the

heuristic sharding strategies. In particular, AutoShard can

well transfer to various scenarios. The trained policy of Au-

toShard can be directly applied to solve a wide range of

sharding tasks with various numbers of tables and different

ratios of the unseen tables without any fine-tuning, achiev-

ing the same level of balance and speedup.

https://en.wikipedia.org/wiki/Partition_problem
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Figure 4: Impact of hash size and dimension on the single table cost (left); impact of indices distribution and pooling factor on

the single table cost (middle); multi-table cost versus the sum of single table costs (right).

2 PRELIMINARIES

We start with a background of distributed recommender systems,

and then formulate the embedding table sharding problem.

2.1 Training Deep Learning Recommendation
Models at Scale

Industrial recommendationmodels usually requiremassivememory

and high training throughput. Therefore, distributed training is

employed in large-scale industrial systems [1, 2, 5, 8, 21, 40]. We

take DLRM3 [24] as an example to introduce the system design.

Figure 3 depicts an overview of DLRM. The system exhibits a

combination of data parallelism and model parallelism. To exploit

data parallelism, each trainer will hold a copy of MLP layers, which

will be trained on its own mini-batch of data. The model parameters

are updated in the fully synchronous mode. For embedding tables,

model parallelism is adopted to shard the tables into multiple de-

vices. In the forward pass of embedding lookup, each device will

perform a lookup for all the indices concerning the tables in the

device (including the indices from the other devices’ mini-batches).

The obtained vectors will be transferred to the corresponding de-

vices via an all-to-all communication. Then each device will receive

all the embedding vectors for its own mini-batch, which will be

interacted with the dense features, followed by an MLP layer for

predictions. In the backward pass, the gradients will be similarly

transferred with another all-to-all communication so that each

device will receive all the gradients for the tables within the device.

2.2 Problem Formulation

In the production environment, the possible embedding tables will

often stay unchanged for a period of time since the raw features for

a recommendation task are relatively steady. Nevertheless, different

subsets of the tables could be used to build recommendation models.

For example, a machine learning engineer may conduct feature

selection by experimenting with different table combinations.

Following the above intuition, we formalize the embedding table

sharding problem. Let T𝑝 = {𝑇1,𝑇2, ...,𝑇𝑁 } be a pool of embedding

tables, where 𝑁 is the total number of tables in the pool. A sharding

task 𝑆 can be represented as a triple 𝑆 = (T ,D,M), where T ⊆

T𝑝 is subset of the tables, D = {1, 2, ..., 𝐾} is a set of shard IDs

with 𝐾 shards in total, and M = {𝑀1, 𝑀2, ..., 𝑀𝐾 } is the memory

3https://github.com/facebookresearch/dlrm

constraints for all the shards. A sharding plan 𝜋 can be represented

as a mapping from each table to a shard. Then each device will get

its own shard to process, which leads to a set of actual memory

usages M̂ = {�̂�1, �̂�2, ..., �̂�𝐾 } (which is obtained by summing the

tables sizes in each shard) and a set of costs C = {𝐶1,𝐶2, ...𝐶𝐾 } in

terms of operation execution time. Embedding table sharding aims

to optimize the sharding plan 𝜋 such that the maximum cost across

shards is minimized subject to the memory constraints:

min
𝜋

max(C) := max
𝑘
𝐶𝑘 s.t. �̂�𝑘 ≤ 𝑀𝑘 ,∀𝑘 ∈ D . (1)

3 ANALYSIS OF EMBEDDING TABLE COST

This section analyzes the table costs on a modern embedding bag

implementation from FBGEMM4 [16] with a 2080Ti GPU.

3.1 Analysis of Single-Table Cost

The cost of a table is mainly determined by the characteristics of

the table itself and indices lookup. Table characteristics include

hash size, which is defined as the number of entries of the table, and

dimension, which means the dimension of the embedding vectors.

Characteristics of indices lookup include pooling factor, which is the

average number of lookup indices per query, and indices distribution,

which determines the indices accessing frequencies. We study the

table characteristics and indices lookup on synthetic tables.

We first visualize the impact of table characteristics. We fix the

pooling factor to be 32 and the indices to be uniformly distributed.

Then we vary the hash size and table dimension to plot the kernel

time in the left-hand side of Figure 4. As expected, we can see that

a higher dimension will significantly increase the kernel time. This

is because the dimension is positively correlated to the amount

of data to be fetched. An interesting observation is that the hash

size only has a moderate impact on the cost, which could be partly

explained by the 𝑂 (1) time complexity for hash table lookup.

Similarly, we study the impact of indices lookup by fixing hash

size to be 106 and dimension to be 32. For the indices distribution,

some indices could be accessed far more frequently than others [2].

We simulate this behavior by restricting the indices access to a

subset of the indices with a pre-defined accessed indices ratio. For

example, a ratio of 1.0 is equivalent to the uniform distribution,

while a ratio of 10−2 suggests only one percent of the indices will

be accessed, which means the indices are sparsely distributed and

4https://github.com/pytorch/FBGEMM/

https://github.com/facebookresearch/dlrm
https://github.com/pytorch/FBGEMM/
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Figure 5: An overview of AutoShard. The RL policy interacts

with the environment and allocates embedding tables one by

one. Based on the generated shards, the micro-benchmark

measures the actual latencies of embedding table operators

and produces a reward to update the RL policy. The cost

model approximates multi-table costs based on the data col-

lected from the micro-benchmark. The estimated costs will

be used to enhance the action representations in RL training.

those one percent of the indices are warm indices. The middle of

Figure 4 shows the impact of the pooling factor and accessed indices

ratio. A larger pooling factor will significantly increase the time,

which is expected since it indicates more indices per lookup. In

contrast, a sparse indices distribution tends to decrease the time.

We speculate that this is caused by the caching mechanism.

The above analysis motivates a series of greedy sharding al-

gorithms, which will be elaborated in Section 5.1. However, the

designed heuristics are sub-optimal since the actual running time

has non-linear and complex relationships with these four factors.

3.2 Analysis of Multi-Table Cost

Since we usually have multiple tables in a shard, we need to esti-

mate the multi-table cost. A naive way is to sum the costs of the

single tables within the shard (single-sum for short). However, this

is inaccurate due to the parallelism of GPU. The right-hand side of

Figure 4 plots the multi-table cost versus the single-sum of 50 ran-

domly sampled table combinations from MetaSyn (see Section 5.1

for dataset details), where each sample contains 10 tables. First, we

observe that the multi-table cost is significantly smaller than the

single-sum. This is because the tables can be batched and acceler-

ated with parallelism. Second, while the single-sum is positively

correlated with the multi-table cost in general, it is still a poor

estimator in many cases. The discrepancy between the multi-table

cost and single-sum will amplify the difficulty of cost estimation.

4 METHODOLOGY

An overview of AutoShard is shown in Figure 5. It consists of

four modules: 1) a micro-benchmark that measures actual costs of

embedding operators (Section 4.1), 2) a cost model which approx-

imates multi-table costs based on the data collected from micro-

benchmark (Section 4.2), 3) an environment that formulates the

sharding process as a Markov Decision Process (MDP) by allocating

one table in each step (Section 4.3), and 4) an RL policy that optimizes

the sharding strategies in a trial-and-error fashion (Section 4.4). Fi-

nally, we summarize the training procedure in Section 4.5.

4.1 Micro-Benchmarking Embedding Operators

This subsection introduces how we efficiently and precisely mea-

sure the latency of embedding tables. Since we only need the la-

tency of embedding operators, we design and implement a micro-

benchmark, which only benchmarks embedding operators alone.

Due to space limitation, we introduce the main steps of micro-

benchmarking here and provide more details in Appendix B.1: 1)

initialization: we initialize the operators with the specified argu-

ments of embedding tables and load the indices data. 2) warmup: we

run the embedding operator several times to warm up the device

to allow the CUDA to complete the necessary preparation for the

operator. 3) benchmarking: run embedding operator several times

and return the mean latency5.

4.2 Modeling Multi-Table Costs

While micro-benchmark can accurately and efficiently measure the

latency, it still needs to run the operators, which remains computa-

tionally expensive for production use. To further accelerate the cost

estimation, we develop a neural cost model to predict the operator

cost based on the data collected from the micro-benchmark. The

neural cost model can be easily deployed since it only requires a

forward pass of a shallow neural network to obtain the cost.

Cost estimation can be formulated as a regression task, which

takes as input the features of multiple tables and outputs the la-

tency. The lower right corner of Figure 5 illustrates the neural

architecture of the cost model. For each table, we use a shared MLP

(green) to generate the single table representations based on the

table features. Then we sum up the single table representations

to obtain a multi-table representation (we have tried other reduc-

tions, such as max and mean, and found that sum works better),

followed by another MLP to predict the cost. This design can flex-

ibly accommodate different numbers of tables and obtain a final

representation with a fixed dimension. We empirically use the fol-

lowing features: table dimension, hash size, pooling factor, table

size, and indices distributions (17 features). We provide more de-

tails of these features in Appendix B.2. Formally, let (X, y) be the

collected data. X is the table features where each row represents

the features of multiple tables and has variable lengths; y denotes a

vector of ground-truth costs obtained by running micro-benchmark

on GPUs. We train the cost model 𝑓 with mean squared error (MSE)

loss 𝐿cost = (y − 𝑓 (X))2. The performance of the cost model is

reported in Table 3 of Appendix.

4.3 Formulating Sharding as MDP

This subsection describes why and how we formulate the sharding

procedure as a sequential decision process. A naive strategy to

solve the sharding problem is to treat it as a black-box optimization

problem, where we sample and evaluate a sharding plan in each

iteration. However, this will lead to an extremely large search space

since each table can be possibly assigned to any shard.

To tackle this problem, we decompose the generation of a shard-

ing plan into multiple steps, where we only assign one table to

a shard in each step. Then after scanning all the tables, we can

5The micro-benchmark is currently maintained as a separate open-source effort for all
the PyTorch operators at https://github.com/facebookresearch/param

https://github.com/facebookresearch/param
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of the single tables’ representations (dotted circle in the right). A policy head produces a shard ID based on the state/action

representations and the cost model. A value head will approximate state values to reduce the variance of RL training.

eventually obtain a sharding plan. This formulation has two de-

sirable properties. First, it can significantly decrease the decision

space. Specifically, the decision space of the sharding policy is only

the number of shards 𝐾 in each step. Although the policy needs

to perform more steps, the decisions made across steps are very

similar (i.e., they all aim to assign a table to achieve load balance)

so that the policy in one step may learn to reuse the knowledge

learned from other steps and improve learning efficiency. Second,

it can implicitly encourage transferable strategies. By associating

one table with one step, a model trained on very few tables can

easily transfer to more tables by simply adding more steps without

re-training. This cannot be achieved by black-box optimization.

We formulate the above process as an MDP with the state, action,

and reward defined as follows. State: The features of the upcoming

table and a step-aware feature which is the ratio of the remaining

tables to be assigned. Action: The shard IDs with 𝐾 actions in

total. The multi-table cost features and the predicted costs from the

cost model can serve as the action features. Reward: The agent

will receive zero rewards for all the intermediate steps and a final

reward indicating the quality of the sharding plan. Specifically, if

the sharding plan meets the memory constraint, we run the micro-

benchmark to obtain the shard latencies of all the shards. The

reward is calculated by the ratio between the maximum latency and

minimum latency, i.e.,𝑚𝑖𝑛(C)/𝑚𝑎𝑥 (C), to encourage the agent to

balance the costs across shards. The reward is in the range of [0, 1],

where a higher reward suggests a better balance. Alternatively, if

the sharding plan cannot meet the memory constraints, we penalize

this behavior with a negative reward, which is determined by the

shard that is the most seriously affected by the memory explosion,

i.e., max𝑘 ((�̂�𝑘 − 𝑀𝑘 )/𝑀𝑘 ). A higher reward indicates that the

sharding plan is closer to meeting the memory constraints.

4.4 Optimizing Sharding Strategy with RL

This subsection presents how we solve the above MDP with RL.

We will first elaborate on the neural architecture design and then

describe how we train the model weights.

Figure 6 illustrates the neural architecture and how it makes pre-

dictions to shard tables. The model takes as input the state features

and actions features, and outputs an action probability vector where

each action corresponds to a shard ID (policy head) and a scalar

Act ion 
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Act ion 
Repr . K

...

Shar ed MLP

Scor e 1 Scor e 2 ... Scor e 3

Sof tm ax
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Figure 7: An illustration of the policy head.

value indicating the value of the state (value head). The model is

instantiated with a two-layer LSTM to process the state and ac-

tions with the following procedure. 1) The state representation is

obtained by combining the table features and step-aware features

(dotted circle in the left). 2) The state representations will be fed

into the LSTM sequentially so that historical state information will

be encoded into LSTM output as well. 3) The multi-table represen-

tations obtained in the cost model will be concatenated with the

predicted costs from the cost model to construct the action repre-

sentations (dotted circle in the right). 4) Each action representation

will be concatenated with the state representation, followed by an

MLP (which is shared for all actions) to produce a confidence score

for the action, shown in Figure 7. 5) The scores for all the actions

will be processed by a Softmax layer to obtain the probability vector,

where the probabilities sum to one. Similarly, the LSTM output will

be fed into another MLP to generate a state value in the value head.

For an upcoming table, the model will sample a shard ID (action)

based on the probabilities from the policy head. The tables will be

allocated to the shards one by one following this procedure.

We train the model with IMPALA [7], a distributed actor-critic al-

gorithm enhanced by V-trace targets to achieve off-policy learning.

The V-trace correction can tackle delayed model weights update,

which is helpful in our problem in that evaluating a sharding plan

is slow and may result in substantial delays. Here, we only briefly

introduce IMPALA since RL itself is not our focus; one can adopt

other RL algorithms as well under our framework. We first intro-

duce the V-trace targets and then describe the loss for updating

the policy and value heads. Let 𝑠𝑡 , 𝑎𝑡 , and 𝑟𝑡 be the state, action,

and reward at step 𝑡 , respectively. We consider an n-step trajectory
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(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 )
𝑡=𝑡 ′+𝑛
𝑡=𝑡 ′ . The V-trace target for 𝑠𝑡 ′ is defined as

𝑉target (𝑠𝑡 ′) = 𝑉 (𝑠𝑡 ′) +

𝑡 ′+𝑛−1∑︁

𝑡=𝑡 ′

𝛾𝑡−𝑡
′

(𝜋𝑡−1𝑖=𝑡 ′𝑐𝑖 )𝛿𝑡𝑉 , (2)

where 𝑉 (𝑠𝑡 ′) is the output of the value head for 𝑠𝑡 ′ , 𝛿𝑡𝑉 = 𝜌𝑡 (𝑟𝑡 +

𝛾𝑉 (𝑠𝑡+1) − 𝑉 (𝑥𝑡 )) is the temporal difference, and 𝑐𝑖 and 𝜌𝑡 are

truncated importance sampling weights that tackle the delayed

update of the model. Then the loss at step 𝑡 is defined as

𝐿𝑡 = 𝜌𝑡 log𝜋 (𝑎𝑡 |𝑠𝑡 ) (𝑟𝑡 +𝛾𝑉target (𝑠𝑡+1−𝑉 (𝑠𝑡 ))+
1

2
(𝑣𝑡−𝑉 (𝑠𝑡 ))

2, (3)

where 𝜋 (𝑎𝑡 |𝑠𝑡 ) and 𝑉 (𝑠𝑡 ) correspond to policy and value heads,

respectively. The training can be batched to update the losses for

multiple steps at a time in each iteration.

4.5 Training of AutoShard

This subsection summarizes the overall training procedure. To im-

prove the sample efficiency, the cost model and the LSTM policy-

value network are jointly trained with shared table representations

and data. Specifically, the MLP for processing the tables features

(i.e., the green parts in Figure 5 and Figure 6) is shared. Similarly, the

data collected by the RL agent will be reused to generate cost data

to train the cost model. The whole training process is summarized

in Algorithm 1. In each training iteration, we collect a batch of

trajectories by interacting with the micro-benchmark to update the

policy-value network (line 4). The collected data will be stored in a

buffer and reused to train the cost model (line 8). Since the main

bottleneck is data collection, we parallelize line 4 with multiple

processes operating on different GPUs. Once the cost model and

the policy-value network are trained, they can be directly applied

to any new sharding tasks by sequentially predicting the shard IDs.

5 EXPERIMENTS

The experiments are conducted on both synthetic datasets and

production datasets at Meta. We aim to answer the following ques-

tions:Q1:Howdoes AutoShard comparewith the heuristic sharding

strategies (Section 5.2)? Q2: How large is the search space of Au-

toShard and can simple random search be competitive with it (Sec-

tion 5.3)? Q3: How does each component of AutoShard contribute

to the performance (Section 5.4)?Q4: Can AutoShard transfer to un-

seen tables, and sharding tasks with more tables (Section 5.5)? Q5:

How efficient is the training/inference of AutoShard (Section 5.6)?

5.1 Experimental Settings

Datasets. The public recommendation datasets often cannot match

the scale of the industrial models to enable a valid evaluation of

embedding table sharding. For example, Criteo6, one of the most

popular datasets, only has 26 sparse features with a cardinality of at

most one million. Thus, our experiments are mainly conducted on

an open-sourced large-scale synthetic dataset7 (MetaSyn), which

shares similar indices accessing patterns to Meta production embed-

ding tables. As tabulated in Table 1, MetaSyn consists of hundreds

of embedding tables with very large and diverse hash sizes and

pooling factors. Since MetaSyn does not specify table dimensions,

6https://www.kaggle.com/c/avazu-ctr-prediction/data
7https://github.com/facebookresearch/dlrm_datasets

Algorithm 1 Training of AutoShard

1: Input: Training tasks Strain = {𝑆𝑖 }
𝑛
𝑖=1, batch size 𝐵1 for policy-

value network and 𝐵2 for cost model, number of update itera-

tions 𝐼 for cost model, number of data collection steps 𝑇

2: Initialize the cost model and policy-value network

3: for iteration = 1, 2, ... until convergence do

4: Collect a set of trajectories with𝑇 steps {𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 }
𝑇
𝑡=1 from a

randomly sampled task from Strain and store the generated

cost data into a buffer

5: if more than 𝐵1 sets of new trajectories are collected then

6: Update policy-value network with Eq. 3

7: for iteration = 1, 2, ..., 𝐼 do

8: Sample a batch of cost data with size 𝐵2 from the buffer

and update the cost model with MSE loss

9: end for

10: end if

11: end for

we randomly select a dimension for each table from {16, 32} (we

purposely make the dimensions small so that our results can be

reproduced on GPUs with 10 GB memory). For verification, we

also conduct experiments on the Meta production embedding ta-

bles (MetaProd), which have a similar scale as MetaSyn except for

larger table dimensions. We keep the details of MetaProd confiden-

tial. MetaSyn and MetaProd will serve as the table pools, where

each sharding task is constructed by a randomly sampled subset of

the tables. Intuitively, with more tables, we also need more devices

so that the tables can fit on the GPU memory. We empirically set

the number of devices to be 1/10 of the total number of tables for

all the tasks since this setting can ensure sufficient memory for all

the sharding algorithms on both MetaSyn and MetaProd; that is,

we use 8 devices for 80 tables, and 16 devices for 160 tables, etc. We

provide more details in Appendix A.

Heuristic Algorithms. We compare AutoShard against several

deployed heuristic sharding algorithms. They mainly consist of two

steps: (1) cost function: each table will be assigned an estimated cost,

and (2) greedy algorithm: the tables are first sorted in descending

order based on the costs. Starting from the table with the highest

cost, greedy algorithm will assign tables one-by-one to the device

with the lowest sum of the costs so far, so that each device will

have roughly an equal sum of the costs in the end. We consider

the heuristics with the following cost functions, which have been

proven to show strong performance in prior work [26]: the size (the

product of dimension and hash size) of the table (size-greedy), the

dimension of the table (dim-greedy), the product of the dimension

and mean pooling factor of the table (lookup-greedy). We further

include a random sharding baseline (rand).

Metrics.We evaluate the performance with the following met-

rics. Degree of balance: the ratio between the minimum latency

and the maximum latency across shards. 100% suggests perfect

balancing where each shard has equal latency, and 0% indicates the

worst-case of load balance. Speedup: the speedup over random

sharding which is the most naive strategy. Specifically, the speedup

is calculated by 𝑚𝑎𝑥 (C𝑟𝑎𝑛𝑑𝑜𝑚)/𝑚𝑎𝑥 (C), where C𝑟𝑎𝑛𝑑𝑜𝑚 and C

https://github.com/facebookresearch/dlrm_datasets
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Table 1: Statistics of Meta synthetic embedding tables.

Attribute Value

Number of Tables 856

Batch Size 65,536

Max/Mean/Min Hash Sizes 12,543,670 / 4,107,458 / 1

Max/Mean/Min Pooling Factors 193 / 15 / 0
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Figure 8: Performance of AutoShard against baselines. We

report the mean and standard deviation across five runs.

are the sets of actual embedding table costs of random sharding

strategy and the sharding algorithm at hand, respectively.

Implementation Details. All the hyperparameters are tuned

based on MetaSyn and the same set of hyperparameters are used

on MetaProd. Specifically, we set 𝐵1 = 8, 𝐵2 = 512, 𝐼 = 20, and 𝑇 =

100. We use the IMPALA implementation in [17] with the default

hyperparameters for RL training.We use 2080 Ti and V100 GPUs for

MetaSyn and MetaProd, respectively. We run all the experiments

five times with random seeds 0, 1, 2, 3, and 4 and report the means

and standard deviations. We provide more details in Appendix C.

5.2 Comparison with the Heuristics

To study Q1, we conduct experiments on the tasks of sharding 80

tables to 8 devices. Specifically, we randomly sample 90 training

tasks, where each task consists of 80 randomly sampled tables

from the pool. Then we sample another 10 different tasks with the

same procedure for the testing purpose. AutoShard is trained on

the 90 training tasks. We collect the mean result on the same 10

testing tasks for all the algorithms. Note that we have purposely

separated the training and testing tasks to test whether AutoShard

can generalize to different table combinations from the pool.

We summarize the results in Figure 8. We make the following

observations. First, all the sharding algorithms outperform the

random sharding, which is expected since random sharding may

easily result in imbalances. Second, AutoShard performs signifi-

cantly and consistently better than the heuristics on both synthetic

and production data for both metrics, which demonstrates the ef-

fectiveness of AutoShard. Third, look-greedy appears to be the

strongest heuristic algorithm. This is expected because it considers

both table dimensions and pooling factors, which can essentially

quantify the workload for the indices lookup. Nevertheless, there

is still a clear gap between lookup-greedy and AutoShard. This is

because AutoShard can achieve a more accurate estimation of the

cost by considering indices distributions and multi-table costs, and

leveraging RL to optimize the sharding process.
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Figure 9: Performance of random search with five runs. Note

that searching 1000 samples is extremely time-consuming

and are often impractical for production use (it takes 9,783

seconds for MetaSyn and 14,599 seconds for MetaProd).

Table 2: Ablation study of AutoShard on MetaSyn.

Degree of Balance Speedup

w/o cost modeling 61.3%±12.9% 1.420±0.203
w/o dimension feature 87.6%±1.5% 1.706±0.056
w/o hash size feature 87.8%±0.9% 1.702±0.047
w/o pooling factor feature 45.9%±1.9% 1.271±0.035
w/o size feature 87.0%±1.1% 1.683±0.049
w/o distribution features 84.3%±1.3% 1.688±0.035

Full version of AutoShard 88.6%±1.2% 1.712±0.027

5.3 Comparison with Random Search

To answer Q2, we implement a random search algorithm to un-

derstand the difficulty of identifying a strong sharding plan in the

search space. We choose random search because it is shown to be

a strong baseline in neural architecture search when the search

space is restricted [19]. Specifically, we treat the tables as decisions,

whose possible choices are the device IDs, and use random search to

optimize the degree of balance. We follow the setting in Section 5.2,

which results in an extremely large search space. Note that search

is infeasible in production because it requires lots of GPU resources.

This experiment is designed solely for understanding of the massive

search space of AutoShard.

Figure 9 plots the performance of random search w.r.t. the num-

ber of samples. Although random search can achieve competitive

performance with lookup-greedy after hours of searching, it is far

behind the AutoShard, which verifies the difficulty of embedding

table sharding. In contrast, AutoShard shows clear advantages in

terms of both effectiveness and efficiency. It can achieve strong

performance with only a forward pass without the search.

5.4 Ablation Studies

For Q3, we consider several ablations: 1) we remove the cost model

and only use raw features to train RL, 2) instead of sharding with RL,

we greedily assign tables like the heuristics with the only difference

that we use the cost model to estimate the cost, and 3) we remove

each of the table features to study the feature importance.

Table 2 summarizes the results. First, we observe a significant

performance drop when removing the cost model, which verifies

the necessity of cost modeling. Second, the pooling factor feature is

a very important feature, which is expected since pooling factor can

indicate the number of lookup indices. Finally, removing either

of the features will degrade the performance, which suggests the

designed features are complimentary.
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Figure 10: Degree of balance (left) and speedup (right) of

AutoShard on MetaSyn with different ratios of unseen tables.

Note that when the ratio is 0.0, the results are worse than

those shown in Figure 8. This is because we only use half of

the tables in this experiment. A possible reason is that more

tables can improve the generalization ability of AutoShard,

which leads to better results on the testing tasks.
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Figure 11: Degree of balance (left) and speedup (right) of

AutoShard on MetaSyn with up to 800 tables. We directly

transfer the model trained on 80 tables without fine-tuning.

5.5 Analysis of Transferability

To investigate Q4, we evaluate the transferability of AutoShard on

unseen tables and sharding tasks with more tables.

To test AutoShard on unseen tables, we split the original table

pools in half, where the first sub-pool is used to train AutoShard,

and the tables in the second sub-pool are unseen in training. Then

we randomly mix the tables from the two sub-pools to construct the

sharding tasks based on a specified ratio of unseen tables. A ratio of

0.0 suggests that all the tables are from the first sub-pool (i.e., all the

tables in the sharding tasks are seen in training), while a ratio of 1.0

means all the tables are from the second sub-pool (i.e., all the tables

are unseen). A high ratio will make the transferability task more

challenging. We report the performance w.r.t. different ratios of

unseen tables in Figure 10. First, AutoShard only shows a moderate

performance decrease when a part of the tables are unseen. Specifi-

cally, when the ratio is between 0.0 to 0.8, AutoShard can achieve

at least 80% degree of balance and 1.6X speedup. Second, when

all the tables are unseen (i.e., the ratio is 1.0), AutoShard can still

achieve more than 70% degree of balance and around 1.6X speedup,

which significantly outperform the baselines.

To test whether AutoShard can scale to hundreds of tables, we

compare AutoShard with baselines on tasks that shard up to 800

tables to 80 GPU devices. Note that in this experiment we have

not trained any new models but instead directly apply the model

trained on 80 tables. We plot the results in Figure 11 and make

the following observations. First, the degree of balance decreases

for all the sharding algorithms. This is expected because the task
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Figure 12: Training curve on four 2080 Ti GPUs (left) and

inference time with a single CPU core (right).

becomes more challenging with more tables. Second, AutoShard

can significantly outperform the baselines in all the settings. In par-

ticular, we surprisingly observe an increase in speedup with more

tables. This is because random sharding will perform poorly with

more tables. This again demonstrates the superiority of AutoShard.

Overall, we conclude that AutoShard can well transfer to un-

seen tables and hundreds of tables, making it a desirable choice in

handling complex training tasks in the production environment.

5.6 Analysis of Training/Inference Efficiency

We analyze the training and inference time to answer Q5. The left-

hand side of Figure 12 plots the training curve of AutoShard on

four GPUs. We observe that AutoShard can achieve more than 80%

degree of balance within around 150 samples or 454 seconds. This

is highly efficient for production use since we only need to train

AutoShard offline periodically (e.g. we can run a daily or weekly

training job). The right-hand side of Figure 12 shows the inference

time with a single CPU core. AutoShard can shard hundreds of

tables in seconds. This cost is neglectable in production use.

6 RELATED WORK

Deep recommendationmodels.Deep-learning-based recommen-

dation models have shown superior performance in many recom-

mendation scenarios [4, 10, 25, 37]. Due to the ultra-large-scale

of the data and the features in industrial applications, distributed

training solutions have been developed to improve the training

efficiency [2, 5, 8, 21, 40]. Despite these efforts, embedding table

sharding remains to be a critical challenge for distributed training.

AutoShard is the first learning-based sharding algorithm that can

optimize the sharding strategy in an end-to-end fashion.

Tackling large embedding tables. How to deal with the ultra-

large embedding tables of recommendation models has been a

long-standing challenge. One line of work aims to reduce the em-

bedding table size, such as sharing the embeddings across related

features [27, 36], searching the vocabulary sizes or the table dimen-

sions [13, 39], pruning [22], quantilization [14], and hashing [15].

Our work is orthogonal to these methods since AutoShard can be

applied to compressed tables as well. A related work explored using

the tiered memory hierarchy to store the embedding tables [26].

They exploited the unequal access patterns of embedding tables to

improve the efficiency by placing hot rows in the GPUmemory. Our

efforts complement [26] by providing an end-to-end learning-based

framework for cost approximation and partitioning optimization.

Deep RL. Deep RL has shown promise in accomplishing goal-

oriented tasks [23, 28, 30, 33, 35]. Recently, deep RL has been applied

to various machine learning model design tasks, such as neural
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architecture search [41], pipeline search [18, 20, 34], data augmen-

tation/sampling [6, 31, 32]. Our work also falls into this line of

studies but we instead focus on optimizing the model efficiency.

Our work is also related to applying RL for classical combinational

optimization [3]. Unlike [3], we tackle a real-world combinational

optimization challenge in industrial recommender systems.

7 CONCLUSIONS AND FUTUREWORK

This work presents a novel solution for embedding table sharding

practiced at Meta. The proposed algorithm, namely AutoShard, uses

a cost model to efficiently estimate the table cost and leverages deep

RL to solve the partition problem. The empirical results suggest that

AutoShard is effective, transferable, and efficient. Through develop-

ing AutoShard, we show the promise in applying RL to optimize the

industrial-level system designs. We have open-sourced a prototype

of AutoShard to motivate and facilitate future exploration in this

direction. In the future, we will extend AutoShard to tackle more

complex sharding tasks by modeling the cost of the communication

and the tiered memory hierarchy.
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A DATASET DETAILS

We will not provide the details of MetaProd for data privacy and

only discuss MetaSyn, which is open-sourced8 and shares similar

patterns to Meta production recommendation workloads.

A.1 Data Format

MetaSyn consists of three PyTorch tensors saved in a single file,

including an indices tensor, an offsets tensor, and a length tensor.

We denote them as indices, offsets, and lengths, respectively.

indices is 1-dimensional, where each element is an integer index.

The indices are ordered by (table_id, batch_offset); that is, if

we scan the tensor from the left to the right, we will first get a batch

of indices for the first table, and then obtain a batch of indices for the

second table, etc. offsets is also 1-dimensional and specifies the

starting position and the ending position for one lookup. It is also

ordered by (table_id, batch_offset). For example, suppose the

batch size is 65,536. Then start = offsets[65536] and end =

offsets[65537] will specify the starting and ending positions of

the first indices lookup in the second table. The indices tensor be-

tween the starting and ending positions, i.e., indices[start:end]

correspond to the first instance in the batch and the second ta-

ble. lengths is 2-dimensional and is of the shape [num_tables,

batch_size], where each element is the pooling factor of the cor-

responding indices lookup. lengths is provided for correctness val-

idation since it can be inferred from the other two tensors. indices

and offsets share the same data format with the batched embed-

ding bag operator from FBGEMM and can be directly fed into it.

A.2 Distributions

We visualize the distribution of hash sizes, the distribution of mean

pooling factors, the relation between the hash sizes and pooling fac-

tors, and the distribution of indices accessing frequency of MetaSyn

in Figure 13. We make the following observations: 1) the hash sizes

for most tables are on the scale of millions, while some can reach

tens of millions. 2) the pooling factor generally follows a power-law

distribution, where the majority is less than 50, while some can

be as large as 200. 3) there is no clear relationship between the

hash size and pooling factor; 4) most of the indices are accessed

less than ten times, while some of them can reach 105. The highly

diverse table characteristics and indices patterns will easily result

in imbalances if not carefully partitioning the tables. Specifically,

the costs of the tables will also be diverse, i.e., some tables will have

extremely high costs while some others could have very low costs.

As a result, if we do not shard the tables carefully, some tables with

high costs can be easily put into the same shard, resulting in a very

high cost for the shard.

A.3 Data Processing

Recall that the 856 tables in MetaSyn will serve as the table pool

in our experiments. For the ease of use, we separate indices and

offsets into a list of indices and a list of offsets, respectively,

where each element corresponds to one table. The offsets for each

table will be re-indexed starting from 0. In training, we merge in-

dices and the offsets of the selected tables to construct the input of

8https://github.com/facebookresearch/dlrm_datasets

Algorithm 2 benchmark_op

1: Input: A PyTorch operator, the arguments of the operator

2: Feed random tensors to GPU to clear the cache

3: Initialize the start and end CUDA events for time measuring

4: Run the forward and backward passes of the operator

5: Collect latency from the CUDA events

6: Return the latency

Algorithm 3 Micro-Benchmark

1: Input: A PyTorch operator, the arguments of the operator, the

number of warmup iterations𝑊 , the number of measuring

iterations 𝐵, the number of removed highest/lowest costs 𝑅

2: for iteration = 1, 2, ... W do

3: Call benchmark_op with the operator and the arguments

4: end for

5: Initialize a Python list costs to store the costs

6: for iteration = 1, 2, ... B do

7: Call benchmark_op and append the result to costs

8: end for

9: Sort the costs and remove the 𝑅 highest/lowest costs.

10: Return the mean of the costs

the operator. For the embedding tables, we randomly choose the

table dimension from {16, 32} since the MetaSyn does not provide

this information. We purposely make the dimensions small to fa-

cilitate reproducibility on GPUs with small memory. Note that, for

MetaProd, the table dimension is specified by the production model

and is larger than MetaSyn. For the parameters of embedding tables,

we randomly initialize them with fp16 precision.

B MODEL DETAILS

B.1 Details of Micro-Benchmark

Precisely measuring the kernel time of the embedding operator

requires non-trivial engineering efforts because of the warmup

overhead of the GPU, cachingmechanism, and variance. Specifically,

naively running an operator multiple times and using the mean

latency as the cost will not result in an accurate estimation. First, the

warmup stage of the CUDA devices will cause significant overhead,

leading to a higher estimation of the cost. Second, the L1 and L2

caches will cache the tensors in the previous iterations and result in

a lower estimation of the cost. Third, some certain anomalous runs

could have very high or low latency due to variance. However, the

mean latency will be sensitive to anomalies. Fortunately, we found

that some engineering tricks can well tackle the above problems to

enable a precise measurement of the latency. The overall procedure

is summarized in Algorithm 3with an inner function in Algorithm 2.

Before actually measuring the time, we first run several warmup

iterations to warm up the GPU (line 2-3 of Algorithm 3). For each

run, we first clear the cache to remove the impact of caching (line

2 of Algorithm 2). To tackle the anomalies, we remove the highest

and the lowest costs and return the mean value of the remaining

costs. We empirically set𝑊 = 5, 𝐵 = 10, and 𝑅 = 2. We have

performed sanity checks and concluded that the time collected from

https://github.com/facebookresearch/dlrm_datasets
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Figure 13: Data distributions of MetaSyn.

Table 3: Mean absolute error (MAE) and mean squared error

(MSE) of the cost model on 100 randomly sampled 10 tables

following the unseen tables setting in Section 5.5, where the

training tables are the first half of the pool, and the testing

tables are the second half. The prediction error of the multi-

table cost is around 1.3 milliseconds on the training tables

and 3 milliseconds on the unseen tables.

MAE (training) MSE (training) MAE (testing) MSE (testing)

1.321 3.408 3.061 10.835

the micro-benchmark is consistent with the kernel time obtained

by profiling. In essence, the micro-benchmark is general and can be

applied to other operators as well. Thus, we have deployed it in the

production environment to support general micro-benchmarking.

It is also open-sourced under PARAM Benchmarks9.

B.2 Details of Features

The features are important for learning. Recall that we have used

the following features in the cost model and the RL policy: table

dimension, hash size, pooling factor, table size, indices distributions,

and step-aware feature. We elaborate on these features below.

• Table dimension: it is the dimension of each embedding

vector in the table. This feature is normalized to have a mean

of 0 and a standard deviation of 1.

• Hash size: it is the number of rows in a table, which is

determined by the feature cardinality. This feature is also

normalized.

• Pooling Factor: it is obtained by dividing the total number

indices with the batch size. This feature is also normalized.

• Table size: it is obtained by calculating the parameter size

in GBs. We do not normalize this feature.

• Indices distributions: Since the majority of the indices are

visited very few times, we divide frequencies into several

bins, where the size of each bin grows exponentially. Specifi-

cally, we use the following 17 bins: (0, 1], (1, 2], (2, 4], (4, 8],

(8, 16], (16, 32], (32, 64], (64, 128], (128, 256], (256, 512], (512,

1024], (1024, 2048], (2048, 4096], (4096, 8192], (8192, 16384],

(16384, 32768], and (32768,∞). We count the number of

times each index appears in a batch of indices and put the

count into the corresponding bin. Then we calculate the ratio

for each bin, which results in 17 features. For example, the

first feature is the ratio of the indices for the bin (0, 1]. The

fourth feature is the ratio of the indices for the bin (4, 8].

• Step-aware feature: it is defined as the the ratio of the

tables that have already been assigned.

9https://github.com/facebookresearch/param

C IMPLANTATION DETAILS

C.1 Neural Architecture

Architecture of the costmodel.Weuse a two-layerMLP to obtain

the representation for every single table. The input dimension is 21,

which is the number of table features. The hidden dimension is 128.

The output size is 32; that is, the size of a single table representation

is 32. For multi-table cases, we sum the table representations to

obtain multi-table representation, whose size is also 32. Finally, we

use another two-layer MLP to produce the multi-table cost, where

the hidden dimension is 64, and the output size is 1.

Architecture of the policy-value network. We first use one-

layer MLP to map the state-aware feature to a 32-dimensional rep-

resentation. Then we concatenate the single table 32-dimensional

representation (shared with the cost model) of the upcoming table

to obtain a 64-dimensional state representation. The state repre-

sentation is processed by a two-layer LSTM with a hidden size

64. For actions, we similar obtain a multi-table representation for

each shard. We use a one-layer MLP to map the shard cost to a

32-dimensional cost representation. The action representation is

obtained by concatenating the multi-table representation and the

cost representation, and is 64-dimensional. For the policy head, we

concatenate the state representation, the action representation, and

their dot-product and use a four-layer MLP with size 128-128-64ś1

to generate the action confidence. Then SoftMax is applied to obtain

the probabilities. For the value head, we use a two-layer MLP with

a size 64-1 to produce the state value.

C.2 Hyperparameters Configuration

We summarize all the hyperparameters of AutoShard below.

• Cost model training: batch size 𝐵2 = 512, the number of

update iteration 𝐼 = 20, the buffer size is 5000.

• RL training: batch size 𝐵1 = 8, number of data collection

steps 𝑇 = 100, number of learning threads is 1, entropy

weight is 0.001, baseline weight is 0.5, discounting factor

is 1.0, gradient is clipped with threshold 40, and the total

number of training steps is 100,000.

• Optimizer: We use Adam optimizer with a learning rate of

0.001. The other hyperparameters are kept as default.

C.3 Hardware

For MetaSyn, we conduct all the experiments on a server with

48 Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz processors, 188

GB memory, and four NVIDIA GeForce RTX 2080 Ti GPUs. For

MetaProd, the server has a similar hardware environment but with

NVIDIA V100 GPUs.

https://github.com/facebookresearch/param
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