
Experience Replay Optimization

Daochen Zha , Kwei-Herng Lai , Kaixiong Zhou and Xia Hu
Department of Computer Science and Engineering, Texas A&M University

{daochen.zha, khlai037, zkxiong, xiahu}@tamu.edu

Abstract

Experience replay enables reinforcement learning
agents to memorize and reuse past experiences,
just as humans replay memories for the situation
at hand. Contemporary off-policy algorithms either
replay past experiences uniformly or utilize a rule-
based replay strategy, which may be sub-optimal.
In this work, we consider learning a replay policy
to optimize the cumulative reward. Replay learn-
ing is challenging because the replay memory is
noisy and large, and the cumulative reward is un-
stable. To address these issues, we propose a novel
experience replay optimization (ERO) framework
which alternately updates two policies: the agent
policy, and the replay policy. The agent is updated
to maximize the cumulative reward based on the re-
played data, while the replay policy is updated to
provide the agent with the most useful experiences.
The conducted experiments on various continuous
control tasks demonstrate the effectiveness of ERO,
empirically showing promise in experience replay
learning to improve the performance of off-policy
reinforcement learning algorithms.

1 Introduction
Experience replay mechanism [Lin, 1992; Lin, 1993] plays a
significant role in deep reinforcement learning, enabling the
agent to memorize and reuse past experiences. It is demon-
strated that experience replay greatly stabilizes the training
process and improves the sample efficiency by breaking the
temporal correlations [Mnih et al., 2013; Mnih et al., 2015;
Wang et al., 2017; Van Hasselt et al., 2016; Andrychowicz
et al., 2017; Pan et al., 2018; Sutton and Barto, 2018]. Cur-
rent off-policy algorithms usually adopt a uniform sampling
strategy which replays past experiences with equal frequency.
However, the uniform sampling cannot reflect the different
importance of past experiences: the agent can usually learn
more efficiently from some experiences than from others, just
as humans tend to replay crucial experiences and generalize
them to the situation at hand [Shohamy and Daw, 2015].

Recently, some rule-based replay strategies have been stud-
ied to prioritize important experiences. One approach is to

directly prioritize the transitions1 with higher temporal dif-
ference (TD) errors [Schaul et al., 2016]. This simple replay
rule is shown to improve the performance of deep Q-network
on Atari environments and is demonstrated to be a useful
ingredient in Rainbow [Hessel et al., 2018]. Other stud-
ies indirectly prioritize experiences through managing the re-
play memory. Adopting different sizes of the replay mem-
ory [Zhang and Sutton, 2017; Liu and Zou, 2017] and se-
lectively remembering/forgetting some experiences with sim-
ple rules [Novati and Koumoutsakos, 2018] are shown to af-
fect the performance greatly. However, the rule-based replay
strategies may be sub-optimal and may not be able to adapt to
different tasks or reinforcement learning algorithms. We are
thus interested in studying how we can optimize the replay
strategy towards more efficient use of the replay memory.

In the neuroscience domain, the recently proposed norma-
tive theory for memory access suggests that a rational agent
ought to replay the memories that lead to the most reward-
ing future decisions [Mattar and Daw, 2018]. For instance,
when a human being learns to run, she tends to utilize the
memories that can mostly accelerate the learning process; in
this context, the memories could relate to walking. We are
thus motivated to use the feedback from the environment as
a rewarding signal to adjust the replay strategy. Specifically,
apart from the agent policy, we consider learning an addi-
tional replay policy, aiming at sampling the most useful ex-
periences for the agent to maximize the cumulative reward. A
learning-based replay policy is promising because it can po-
tentially find more useful experiences to train the agent and
may better adapt to different tasks and algorithms.

However, it is nontrivial to model the replay policy for sev-
eral challenges. First, transitions in the memory are quite
noisy due to the randomness of the environment. Second, the
replay memory is typically large. For example, the common
memory size for the benchmark off-policy algorithm deep de-
terministic policy gradient (DDPG) [Lillicrap et al., 2016]
can reach 106. The replay policy needs to properly filter out
the most useful ones among all the transitions in the mem-
ory. Third, the cumulative reward is unstable, also due to the
environmental randomness. Therefore, it is challenging to ef-
fectively and efficiently learn the replay policy.

1Transition and experience are considered exchangeable in this
work when the context has no ambiguity.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4243

To address the above issues, in this paper, we propose ex-
perience replay optimization (ERO) framework, which alter-
nately updates two policies: the agent policy, and the replay
policy. Specifically, we investigate how to efficiently replay
the most useful experiences from the replay buffer, and how
we can make use of the environmental feedback to update the
replay policy. The main contributions of this work are sum-
marized as follows:
• Formulate experience replay as a learning problem.
• Propose ERO, a general framework for effective and ef-

ficient use of replay memory. A priority vector is main-
tained to sample subsets of transitions for efficient re-
playing. The replay policy is updated based on the im-
provement of cumulative reward.
• Develop an instance of ERO by applying it to the bench-

mark off-policy algorithm DDPG.
• Conduct experiments on 8 continuous control tasks from

OpenAI Gym to evaluate our framework. Empirical re-
sults show promise in experience replay learning to im-
prove the performance of off-policy algorithms.

2 Problem Statement
We consider standard reinforcement learning (RL) which is
represented by a sextuple (S,A,PT ,R, γ, p0), where S is
the set of states, A is the set of actions, PT : S × A → S
is the state transition function, R : S × A × S → R is
the reward function, γ ∈ (0, 1) is the discount factor, and
p0 is the distribution of the initial state. At each timestep
t, an agent takes action at ∈ A in state st ∈ S and ob-
serves the next state st+1 with a scalar reward rt, which
results in a quadruple (st, at, rt, st+1), also called transi-
tion. This also leads to a trajectory of states, actions and
rewards (s1, a1, r1, s2, a2, r2, ...). The objective is to learn
a policy π : S → A that maximizes the cumulative reward
R = E[

∑∞
t=1 γ

trt]. An off-policy agent makes use of an
experience replay buffer, denoted as B. At each timestep t,
the agent interacts with the environment and stores transition
(st, at, rt, st+1) into B. Let Bi denote the transition in B at
position i. Then for each training step, the agent is updated
by using a batch of transitions {Bi} sampled from the buffer.

Based on the notations defined above, we formulate the
problem of learning a replay policy as follows. Given a task
T , an off-policy agent Λ and the experience replay buffer B,
we aim at learning a replay policy φ which at each training
step samples a batch of transitions {Bi} from B to train agent
Λ, i.e., learning the mapping φ : B → {Bi}, such that bet-
ter performance can be achieved by Λ on task T in terms of
cumulative reward and efficiency.

3 Methodology
Figure 1 shows an overview of the ERO framework. The core
idea of the proposed framework is to use a replay policy to
sample a subset of transitions from the buffer, for updating
the reinforcement learning agent. Here, the replay policy gen-
erates a 0-1 boolean vector to guide subset sampling, where
1 indicates that the corresponding transition is selected (de-
tailed in Section 3.1). The replay policy indirectly teaches

Environment

Agent

Buffer...

reward state action

batch

sample

1...0 1 01

Replay Policy

feedback

store

Figure 1: An overview of experience replay optimization (ERO).
The reinforcement learning agent interacts with the environment and
stores the transition into the buffer. In training, the replay policy gen-
erates a vector to sample a subset of transitions Bs from the buffer,
where 1 indicates that the corresponding transition is selected. The
sampled transitions are then used to update the agent.

the agent by controlling what historical transitions are used,
and is adjusted according to the feedback which is defined as
the improvement of the performance (detailed in Section 3.2).
Our framework is general and can be applied to contempo-
rary off-policy algorithms. Next, we elaborate the details of
the proposed ERO framework.

3.1 Sampling with Replay Policy
In this subsection, we formulate a learning-based replay pol-
icy to sample transitions from the buffer.

Let Bi be a transition in buffer B with a associated feature
vector fBi (we empirically select some features, detailed in
Section 5), where i denotes the index. In ERO, the replay
policy is described as a priority score function φ(fBi |θφ) ∈
(0, 1), in which higher value indicates higher probability of a
transition being replayed, φ denotes a function approximator
which is a deep neural network, and θφ are the corresponding
parameters. For each Bi, a score is calculated by the replay
policy φ. We further maintain a vector λ to store these scores:

λ = {φ(fBi |θφ)|Bi ∈ B} ∈ RN , (1)
where N is the number of transitions in B, element λi is the
priority score of the corresponding transition Bi. Note that it
is infeasible to keep all the priority scores up-to-date because
the buffer size is usually large. To avoid expensive sweeps
over the entire buffer, we adopt an updating strategy simi-
lar to [Schaul et al., 2016]. Specifically, a score is updated
only when the corresponding transition is replayed. With this
approximation, some transitions with very low scores could
remain almost never sampled. However, we have to consider
the efficiency issue when developing replay policy. In our
preliminary experiments, we find this approximation works
well and significantly accelerates the sampling. Given the
scores vector λ, we then sample Bs according to

I ∼ Bernoulli(λ),

Bs = {Bi|Bi ∈ B ∧ Ii = 1}, (2)

where Bernoulli(·) denotes the Bernoulli distribution, I is an
N-dimensional vector with element Ii ∈ {0, 1}. That is, Bs

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4244

Algorithm 1 ERO enhanced DDPG

1: Initialize policy π, replay policy φ, buffer B
2: for each iteration do
3: for each timestep t do
4: Select action at according to π and state st
5: Execute action at and observe st+1 and rt
6: Store transition (st, at, rt, st+1) into B
7: if episode is done then
8: Calculate the cumulative reward rcπ
9: if rcπ′ 6= null then

10: Bs = UpdateReplayPolicy(rcπ , rcπ′ , B)
11: end if
12: Set rcπ′ ← rcπ
13: end if
14: end for
15: for each training step do
16: Uniformly sample a batch {Bsi } from Bs
17: Update the critic of π with Eq. (9) and (10)
18: Update the actor of π with Eq. (11)
19: Update target networks with Eq. (12) and (13)
20: Update λ for each transition in {Bi}
21: end for
22: end for

is the subset of B such that the transition is selected when the
corresponding value in I is 1. In this sense, if transition Bi has
higher priority, it will be more likely to have Ii = 1, hence
being more likely to be in the subset Bs. Then Bs is used
to update the agent with standard procedures, i.e., mini-batch
updates with uniform sampling. The binary vector I, which
serves as a “mask” to narrow down all the transitions to a
smaller subset of transitions, indirectly affects the relaying.

3.2 Training with Policy Gradient
This subsection describes how the replay policy is updated in
ERO framework.

From the perspective of reinforcement learning, the binary
vector I can be regarded as the “action” taken by the replay
policy. The replay-reward is defined as

rr = rcπ − rcπ′ , (3)

where rcπ′ and rcπ are the cumulative reward of the previous
agent policy π′ and the agent policy π updated based on I,
respectively. The cumulative reward of π is estimated by the
recent episodes it performs2. The replay-reward can be in-
terpreted as how much the action I helps the learning of the
agent. The objective of the replay policy is to maximize the
improvement:

J = EI[r
r]. (4)

By using the REINFORCE trick [Williams, 1992], we can
calculate the gradient of J w.r.t θφ:

5θφJ = 5θφEI[r
r]

= EI[r
r 5θφ logP(I|φ)],

(5)

2In our implementation, a replay-reward is computed and used
to update the replay policy when one episode is finished. rcπ is esti-
mated by the mean of recent 100 episodes.

Algorithm 2 UpdateReplayPolicy
Input:

Cumulative reward of current policy rcπ
Cumulative reward of previous policy rcπ′

Buffer B
Output:

Sampled subset Bs
1: Calculate replay-reward based on Eq. (3)
2: for each replay updating step do
3: Randomly sample a batch {Bi} from B
4: Update replay policy based on Eq. (8)
5: end for
6: Sample a subset Bs from B using Eq. (2)

where P(I|φ) is the probability of generating binary vector
I given φ, and φ is the abbreviation for φ(fBi |θφ). Since
each entry of I is sampled independently based on λ, the term
logP(I|φ) can be factorized as:

logP(I|φ) =
N∑
i=1

logP(Ii|φ)

=

N∑
i=1

[Ii log φ+ (1− Ii) log(1− φ)],

(6)

where N is the number of the transitions in B, and Ii is the
binary selector for transition Bi. The resulting policy gradient
can be written as:

5θφJ ≈ rr
N∑
i=1

5θφ [Ii log φ+ (1− Ii) log(1− φ)]. (7)

If we regard I as “labels”, then Eq. (7) can be viewed as cross-
entropy loss of the replay policy φ, scaled by rr. Intuitively,
a current positive (negative) reward will encourage (discour-
age) the next action to be similar to the current action I. Thus,
the replay policy is updated to maximize the replay-reward.
At each replay updating step, the gradient of Eq. (7) can be
approximated by sub-sample a mini-batch of transitions from
B to efficiently update the replay policy:

∑
j:Bj∈Bbatch

rr 5θφ [Ij log φ+ (1− Ij) log(1− φ)], (8)

where Bbatch denotes a mini-batch of transitions sampled
from B. Note that the replay policy is updated only at the
end of each episode. When an episode is finished, the replay-
reward for the current action I is used to update the replay
policy. The updates of the replay policy rely on the cumula-
tive rewards of the recent episodes in the training process, but
do not require generating new episodes.

4 Application to Off-policy Algorithms
In this section, we use the benchmark off-policy algorithm
DDPG [Lillicrap et al., 2016] as an example to show how
ERO is applied. Note that ERO could also be applied to other
off-policy algorithms by using similar procedures.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4245

DDPG is a model-free actor-critic algorithm consisting of
an actor function µ(s|θµ) that specifies the current policy and
a critic function Q(st, at|θQ). Here, θµ and θQ are approxi-
mated by deep neural networks. In training, DDPG optimizes
θQ by minimizing the following loss w.r.t θQ:

L(θQ) =
1

N

∑
t

(yt −Q(st, at|θQ))2, (9)

where

yt = r(st, at) + γQ(st+1, µ(st+1|θµ)|θQ). (10)

The actor network can be updated by applying chain rules to
J , the expected return over the state distribution, w.r.t θµ [Sil-
ver et al., 2014]:

5θµJ ≈ Est [5θµQ(st, µ(st|θµ)|θQ)]

= Est [5µQ(st, µ(st|θµ)|θQ)5θµ µ(st|θµ)].
(11)

To learn the non-linear function approximators in a stable
manner, DDPG uses two corresponding target networks to
update slowly:

θQ
′
← τθQ + (1− τ)θQ

′
, (12)

θµ
′
← τθµ + (1− τ)θµ

′
, (13)

where τ ∈ (0, 1], Q′ and µ′ are the target critic network and
target actor network, respectively. DDPG maintains an ex-
perience replay buffer. For each training step, the critic and
the actor are updated by using a randomly sampled batch of
transitions from the buffer.

To apply ERO framework to DDPG, we first sample a sub-
set of the transitions from the buffer according to the replay
policy, and then feed this subset of transitions to DDPG al-
gorithm. The ERO enhanced DDPG is summarized in Algo-
rithm 1, where Line 20 updates the transition priority scores
with the replay policy, and Algorithm 2 serves for replay
learning purpose.

5 Experiments
In this section, we conduct experiments to evaluate ERO. We
mainly focus on the following questions: Q1: How effective
and efficient is our ERO compared with the uniform replay
strategy as well as the rule-based alternatives? Q2: What
kind of transitions could be beneficial based on the learned
replay policy?

5.1 Experimental Setting
Our experiments are conducted on the follow-
ing continuous control tasks from OpenAI Gym3:
HalfCheetah-v2, InvertedDoublePendulum-v2, Hopper-v2,
InvertedPendulum-v2, HumanoidStandup-v2, Reacher-
v2, Humanoid-v2, Pendulum-v0 [Todorov et al., 2012;
Brockman et al., 2016]. We apply ERO to the benchmark
off-policy algorithm DDPG [Lillicrap et al., 2016] for the
evaluation purpose. Our ERO is compared against the
following baselines:

3https://gym.openai.com/

• Vanilla-DDPG: DDPG with uniform sampling.
• PER-prop: Proportional prioritized experience re-

play [Schaul et al., 2016], which prioritizes transitions
with high temporal difference errors with rules.
• PER-rank: Rank-based prioritized experience re-

play [Schaul et al., 2016], a variant of PER-prop which
adopts a binary heap for the ranking purpose.

For a fair comparison, PER-prop, PER-rank and ERO are all
implemented on the identical Vanilla-DDPG.

Implementation details Our implementations are based
on OpenAI DDPG baseline 4. For Vanilla-DDPG, we follow
all the settings described as in the original work [Lillicrap et
al., 2016]. Specifically, τ = 0.001 is used for soft target
updates, learning rates of 10−4 and 10−3 are adopted for ac-
tor and critic respectively, the Ornstein-Uhlenbeck noise with
θ = 0.15 and σ = 0.2 is used for exploration, the mini-batch
size is 64, the replay buffer size is 106, the number of roll-
out steps is 100, and the number of training steps is 50. For
other hyperparameters and the network architecture, we use
the default setting as in the OpenAI baseline. For the two pri-
oritized experience replay methods PER-prop and PER-rank,
we search the combinations of α and β and report the best
results. For our ERO, we empirically use three features for
each transition: the reward of the transition, the temporal dif-
ference (TD) error, and the current timestep. TD error is up-
dated only when a transition is replayed. We implement the
replay policy by using MLP with two hidden layers (64-64).
The number of replay updating steps is set to 1 with mini-
batch size 64. Adam optimizer is used with a learning rate of
10−4. Our experiments are performed on a server with 24 In-
tel(R) Xeon(R) CPU E5-2650 v4 @ 2.2GHz processors and
4 GeForce GTX-1080 Ti 12 GB GPU.

5.2 Performance Comparison
The learning curves on 8 classical control tasks are shown in
Figure 2. Each task is run for 5 times with 2× 106 timesteps
using different random seeds, and the average return over
episodes is reported. We make the following observations.

First, the proposed ERO consistently outperforms all the
baselines on most of the continuous control tasks in terms
of sample efficiency. On HalfCheetah, InvertedPendulum,
and InvertedDoublePendulum, ERO performs clearly better
than Vanilla-DDPG. On Hopper, Pendulum, and Human-
moid, faster learning speed with a higher return is observed.
The intuition of our superior performance on various envi-
ronments is that the replay policy of ERO is updated to re-
play the most suitable transitions during training. This also
demonstrates that exploiting the improvement of the policy
as a reward to update the replay policy is promising.

Second, rule-based prioritized replay strategies do not pro-
vide clear benefits to DDPG on the 8 continuous control tasks,
which can also be verified from the results in [Novati and
Koumoutsakos, 2018]. Specifically, PER-prop only provides
a very slight improvement on 5 out of 8 tasks, and shows
no clear improvement on the others. An interesting observa-
tion is that PER-rank even worsens the performance on 4 out

4https://github.com/openai/baselines

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4246

Vanilla-DDPGPER-rankPER-propERO (ours)

0.0 0.5 1.0 1.5 2.0
timestep (1e6)

0

500

1000

1500

2000

2500

re
tu

rn

(a) HalfCheetah

0.0 0.5 1.0 1.5 2.0
timestep (1e6)

0

100

200

300

(b) InvertedPendulum

0.0 0.5 1.0 1.5 2.0
timestep (1e6)

200

400

600

800

1000

1200

(c) InvertedDoublePendulum

0.0 0.5 1.0 1.5 2.0
timestep (1e6)

−35

−30

−25

−20

−15

−10

(d) Reacher

0.0 0.5 1.0 1.5 2.0
timestep (1e6)

0

200

400

600

re
tu

rn

(e) Hopper

0.0 0.5 1.0 1.5 2.0
timestep (1e6)

−1500

−1250

−1000

−750

−500

−250

(f) Pendulum

0.0 0.5 1.0 1.5 2.0
timestep (1e6)

100

200

300

400

500

(g) Humanoid

0.0 0.5 1.0 1.5 2.0
timestep (1e6)

30000

40000

50000

60000

70000

80000

(h) HumanoidStandup

Figure 2: Performance comparison of ERO against baselines on 8 continuous control tasks. The shaded area represents mean ± standard
deviation. ERO outperforms baselines on most of the continuous control tasks.

of 8 continuous control tasks. A possible explanation is that
the rank-based prioritization samples transitions based on a
power-law distribution. When the buffer size is large, the
transitions near the tail are barely selected, which may lead
to significant bias in the learning process5. Recall that the
two rule-based strategies prioritize the transitions with high
temporal difference (TD) errors. A potential concern is that a
transition with high TD error may substantially deviate from
the current policy, hence introducing noise to the training, es-
pecially in the later training stages when the agent focuses
on a preferred state space. This may partly explain why the
two PER methods do not show significant improvement over
Vanilla-DDPG. The results further suggest that rule-based re-
play strategies may be sensitive to different agents or envi-
ronments. By contrary, the replay policy of ERO is updated
based on the feedback from the environment, and consistent
improvement is observed in various tasks.

Comparison of running time Table 3 shows the aver-
age running time in seconds of ERO enhanced DDPG and
Vanilla-DDPG on the 8 continuous control tasks for 2 × 106

timesteps. We observe that ERO requires slightly more run-
ning time than Vanilla-DDPG. It is expected because ERO re-
quires additional computation for replay policy update. Note
that the interactions with the environment usually dominate
the cost of RL algorithms. In practice, the slightly more com-
putational resources of ERO, which are often much cheaper
than the interactions with the environment, are greatly out-
weighed by the sample efficiency it provides.

5We have tuned the hyperparameters of the importance sampling
trying to correct the potential bias, but we did not observe better
performance.

0 1 2 3
Running time (1e4 seconds)

HumanoidStandup
Humanoid

InvertedDoublePendulum
HalfCheetah

InvertedPendulum
Hopper

Pendulum
Reacher

ERO
DDPG

Figure 3: Comparison of running time in seconds for ERO and
Vanilla-DDPG. ERO requires only slightly more running time com-
pared with Vanilla-DDPG.

5.3 Analysis of the Sampled Transitions
For further understanding the learned replay policy, we record
the transition features through the entire training process of
one trial on HalfCheetah to analyze the characteristics of the
sampled transitions. Figure 4 plots the average values for
the three features: temporal difference (TD) error, timestep
difference between the training timestep and the timestep at
which the transition is obtained, and reward of the transition.
We may empirically find some insights of the replay policy.

As expected, PER-prop tends to sample transitions with
high TD errors. Interestingly, the learned replay policy of
ERO samples more transitions with low TD errors, which are
even lower than Vanilla-DDPG. It contradicts to our belief
that the transitions with low TD errors are well-known by the
agent, which could cause catastrophic forgetting problem. It
also contradicts to the central idea of prioritized replay which
prioritizes “unexpected” transitions. We hypothesize this task

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4247

Vanilla-DDPGPER-propERO (ours)
TD

 e
rr

or

timestep (1e6)

0

1

2

3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

tim
es

te
p

di
�e

re
nc

e

timestep (1e6)

0.00 0.25 0.750.50 1.00 1.25 1.50 1.75 2.00

100000

0

200000

300000

re
w

ar
d

0.2

0.4

0.6

0.8

1.0

timestep (1e6)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Figure 4: The evolution of TD error (top), timestep difference (mid-
dle), and reward of the transition (bottom) with respect to timestep.
Timestep difference is the difference between the training timestep
and the timestep at which the transition is obtained (that is, low
timestep difference means that the agent tends to use recent transi-
tions for the updates). The average values over transitions are plotted
for clearer visualization.

may not necessarily contain catastrophic states, and the tran-
sitions with slightly low TD errors may align better with the
current policy and could be more suitable for training in this
specific task. The unsatisfactory performance of PER meth-
ods also suggests that prioritizing transions with high TD er-
rors may not help in this task. We believe more studies are
needed to understand this aspect in the future work. We ob-
serve that both PER-prop and ERO sample more recent tran-
sitions than Vanilla-DDPG. This is also expected for PER-
prop, because newly added transitions usually have higher
TD errors. Although ERO tends to sample transitions with
low TD errors, it also favors recent transitions. This suggests
that recent transitions may be more helpful in this specific
task. For the transition reward, all the three methods tend to
sample transitions with higher rewards as timestep increases.
It is reasonable since more transitions with higher rewards are
stored into the buffer in the later training stages.

Overall, we find that it is nontrivial to heuristically use
rules to define a proper replay strategy, which may depend
on a lot of factors from both the algorithm and the environ-
ment. A simple rule may not be able to identify the most
useful transitions and could be sensitive to different tasks or
different reinforcement learning algorithms. For example, the
prioritized experience replay shows no clear benefit to DDPG
on the above continuous control tasks from OpenAI gym. A
learning-based replay policy will be more desirable because
it is optimized based on different tasks and algorithms.

6 Discussion and Extension
Replay learning can be regarded as a kind of meta-learning.
There are several analogous studies in the context of RL:
learning to generate data for exploration [Xu et al., 2018a],
learning intrinsic reward to maximize the extrinsic reward on
the environment [Zheng et al., 2018], adapting discount fac-
tor [Xu et al., 2018b]. Different from these studies, we fo-
cus on how reinforcement learning agents can benefit from
learning-based replay policy.

Our ERO can also be viewed as a teacher-student frame-
work, where the replay policy (teacher) provides past experi-
ences to the agent (student) for training. Our work has simi-
larity to learning a teaching strategy in the context of super-
vised learning [Fan et al., 2018; Wu et al., 2018]. However,
replay learning differs from teaching a supervised classifier.
It is much more challenging due to the large and noisy re-
play memory, and the unstable learning signal. Our frame-
work could be extended to teach the agent when to remem-
ber/forget experiences, or what buffer size to adopt.

ERO could potentially motivate the research of continual
(lifelong) learning. Experience replay is shown to effec-
tively transfer knowledge and mitigate forgetting [Yin and
Pan, 2017; Isele and Cosgun, 2018]. While existing studies
selectively store/replay experiences with rules, it is possible
to extend ERO to a learning-based experience replay in the
context of continual learning.

7 Conclusion and Future Work
In this paper, we identify the problem of experience replay
learning for off-policy algorithms. We introduce a simple
and general framework ERO, which efficiently replays the
useful experiences to accelerate the learning process. We de-
velop an instance of our framework by applying it to DDPG.
Experimental results suggest that ERO consistently improves
the sample efficiency compared with Vanilla-DDPG and rule-
based strategies. While more studies are needed to un-
derstand experience replay, we believe our results empiri-
cally show that it is promising to learn experience replay
for off-policy algorithms. The direct future work is to ex-
tend our framework to learn which transitions should be
stored/removed from the buffer and how we can adjust the
buffer size in different training stages. We are also interested
in studying learning-based experience replay in the context
of continual learning. We will investigate the effectiveness of
more features, such as signals from the agent, to study which
features are important. Finally, since our framework is gen-
eral, we would like to test it on other off-policy algorithms.

Acknowledgements
This work is, in part, supported by NSF (#IIS-1718840 and
#IIS-1750074). The views and conclusions contained in this
paper are those of the authors and should not be interpreted
as representing any funding agencies.

References
[Andrychowicz et al., 2017] Marcin Andrychowicz, Filip

Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Pe-
ter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4248

Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In NeurIPS, 2017.

[Brockman et al., 2016] Greg Brockman, Vicki Cheung,
Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[Fan et al., 2018] Yang Fan, Fei Tian, Tao Qin, Xiang-Yang
Li, and Tie-Yan Liu. Learning to teach. In ICLR, 2018.

[Hessel et al., 2018] Matteo Hessel, Joseph Modayil, Hado
Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Sil-
ver. Rainbow: Combining improvements in deep rein-
forcement learning. In AAAI, 2018.

[Isele and Cosgun, 2018] David Isele and Akansel Cosgun.
Selective experience replay for lifelong learning. In AAAI,
2018.

[Lillicrap et al., 2016] Timothy P Lillicrap, Jonathan J Hunt,
Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. In ICLR, 2016.

[Lin, 1992] Long-Ji Lin. Self-improving reactive agents
based on reinforcement learning, planning and teaching.
Machine learning, 8(3-4):293–321, 1992.

[Lin, 1993] Long-Ji Lin. Reinforcement learning for robots
using neural networks. Technical report, Carnegie-Mellon
Univ Pittsburgh PA School of Computer Science, 1993.

[Liu and Zou, 2017] Ruishan Liu and James Zou. The ef-
fects of memory replay in reinforcement learning. arXiv
preprint arXiv:1710.06574, 2017.

[Mattar and Daw, 2018] Marcelo Gomes Mattar and
Nathaniel D Daw. Prioritized memory access explains
planning and hippocampal replay. bioRxiv, page 225664,
2018.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. In NIPS Deep Learning Work-
shop, 2013.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529,
2015.

[Novati and Koumoutsakos, 2018] Guido Novati and Petros
Koumoutsakos. Remember and forget for experience re-
play. arXiv preprint arXiv:1807.05827, 2018.

[Pan et al., 2018] Yangchen Pan, Muhammad Zaheer, Adam
White, Andrew Patterson, and Martha White. Organiz-
ing experience: a deeper look at replay mechanisms for
sample-based planning in continuous state domains. In IJ-
CAI, 2018.

[Schaul et al., 2016] Tom Schaul, John Quan, Ioannis
Antonoglou, and David Silver. Prioritized experience re-
play. In ICML, 2016.

[Shohamy and Daw, 2015] Daphna Shohamy and
Nathaniel D Daw. Integrating memories to guide
decisions. Current Opinion in Behavioral Sciences,
5:85–90, 2015.

[Silver et al., 2014] David Silver, Guy Lever, Nicolas Heess,
Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In ICML, 2014.

[Sutton and Barto, 2018] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[Todorov et al., 2012] Emanuel Todorov, Tom Erez, and Yu-
val Tassa. Mujoco: A physics engine for model-based con-
trol. In IROS, 2012.

[Van Hasselt et al., 2016] Hado Van Hasselt, Arthur Guez,
and David Silver. Deep reinforcement learning with dou-
ble q-learning. In AAAI, 2016.

[Wang et al., 2017] Ziyu Wang, Victor Bapst, Nicolas Heess,
Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu, and
Nando de Freitas. Sample efficient actor-critic with expe-
rience replay. In ICLR, 2017.

[Williams, 1992] Ronald J Williams. Simple statistical
gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

[Wu et al., 2018] Lijun Wu, Fei Tian, Yingce Xia, Yang Fan,
Tao Qin, Lai Jian-Huang, and Tie-Yan Liu. Learning to
teach with dynamic loss functions. In NeurIPS, 2018.

[Xu et al., 2018a] Tianbing Xu, Qiang Liu, Liang Zhao, Wei
Xu, and Jian Peng. Learning to explore with meta-policy
gradient. In ICML, 2018.

[Xu et al., 2018b] Zhongwen Xu, Hado van Hasselt, and
David Silver. Meta-gradient reinforcement learning. In
NeurIPS, 2018.

[Yin and Pan, 2017] Haiyan Yin and Sinno Jialin Pan.
Knowledge transfer for deep reinforcement learning with
hierarchical experience replay. In AAAI, 2017.

[Zhang and Sutton, 2017] Shangtong Zhang and Richard S
Sutton. A deeper look at experience replay. NIPS Deep
Reinforcement Learning Symposium, 2017.

[Zheng et al., 2018] Zeyu Zheng, Junhyuk Oh, and Satinder
Singh. On learning intrinsic rewards for policy gradient
methods. In NeurIPS, 2018.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4249

