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Time-Series Classification (TSC)

e General Goal. Given a collection of time-series with the attached
labels, THC aims to train a classifier to classify unseen time-series.

e Univariate Time-series. A univariate time-series x of length 7T’
is represented as a vector |zq, xo, ..., T7|.

e Multivariate Time-Series. An M-dimensional time-series X
consists of M univariate time-series [Xi, Xo, ..., Xp7|. We regard a
univariate time-series x as a special case of multivariate time-series,
i.e., a 1-dimensional time-series X € R

e Problem Formulation. Given some testing time-series
XteSt [Xl, XQ, .o XNtest] aﬂd the 1abels thSt [yl, yQ, ceey yj\ftest]7
where N is the number of testing time-series, we aim to train a

classifier that can predict the labels based on X' under one of the

following settings:

e Supervised setting: The classifier is trained based on a training time-series
dataset X" = [X, Xy, ..., X yuan| and its corresponding labels

yUI = [y, 1, ..., Yyuan|, where N1 is the number of training time-series.

e Inductive semi-supervised setting: In addition to X" and y"® the
classifier can also access some unlabeled time-series X™#h¢led which does not
overlap with Xt

e Transductive semi-supervised setting: In addition to X" y
Jvnlabeled “the classifier is exposed to testing time-series X', Note that y

not accessﬂale in training.
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Existing Work

The existing work approaches TSC problem in two major directions:

e Similarity-based methods: Combine a £-NN classifier with a
similarity measure for classification.

e Deep Learning: Perform end-to-end training on the raw
time-series and learn the representations to do classification.

DTW vs ResNet

We compare DTW (a representative similarity-based method) and
ResNet (a representative deep learning approach) on the full 128 UCR
datasets (benchmarks in this domain). We report the average ranks.
The lower the better.
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Figure: Average ranks ({) of ResNet and DTW on the full 128 UCR datasets, where
different numbers of labels per class is given.

e Observation 1: ResNet dominates DT'W when we have enough
labels.

e Observation 2: DT'W achieves better performance when we have
very few labels by reasoning with pair-wise similarities.

e Research Question: Can we connect them in such a way as to
jointly model time-series similarities and learn the representations?

Challenges

e How can we incorporate similarity information into representation
learning?’

e How can we balance similarity information and the original
representation learning?

SIMTSC framework

To address the challenges, we propose Similarity-Aware Time-Series
Classification (SimT'SC), a conceptually simple and general framework
for incorporating similarity information into deep learning models.
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e Step 1: Graph Construction. We treat each time-series as a
node in the graph and treat the pair-wise similarity (e.g., DTW) as
the edge weight.

o Step 2: Backbone. Use a backbone (e.g., ResNet) to extract
time-series features.

e Step 3: Aggregation with GNN. Use Graph Neural Networks
(GNNs) to aggregate the representations based on the constructed
oraph.

e Step 4: Classification. A classification head will make the final
predictions.

Visualization of the Learned Representations

100 ~ 100 -

50 A
50 A

_50 -

—50 -
—100 A

—100 A

—150 A

(a) ResNet (83% accuracy) (b) SimTSC (100% accuracy)

Figure: Learned representations of ResNet and SimTSC on Coffee with 56 time-series,
two classes marked in blue and green, respectively, and only one time-series labeled in
each class (circled in red).

Read More

For more experimental results, please read our paper.
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