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ABSTRACT

Outlier detection is an important task for various data mining ap-
plications. Current outlier detection techniques are often manually
designed for specific domains, requiring large human efforts of data-
base setup, algorithm selection, and hyper-parameter tuning. To fill
this gap, we present PyODDS, an automated end-to-end Python
system for Outlier Detection with Database Support, which auto-
matically optimizes an outlier detection pipeline for a new data
source at hand. Specifically, we define the search space in the out-
lier detection pipeline, and produce a search strategy within the
given search space. PyODDS enables end-to-end executions based
on an Apache Spark backend server and a light-weight database. It
also provides unified interfaces and visualizations for users with or
without data science or machine learning background. In particu-
lar, we demonstrate PyODDS on several real-world datasets, with
quantification analysis and visualization results.
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1 INTRODUCTION

Outliers refer to the objects with patterns or behaviors that are
significantly rare and different from the rest of the majority. Outlier
detection plays an important role in various applications, such as
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fraud detection, cyber security, medical diagnosis, and industrial
manufacturer. The research of outlier detection traces far back, and
numerous approaches have been proposed to tackle the problem.
Representative categories of outlier detection approaches include
density-based, distance-based and model-based approaches.

Despite the exciting results in outlier detection research, it is chal-
lenging and expensive to apply outlier detection to tackle real-world
problems. First, there is no single outlier detection algorithm out-
performs the others on all scenarios, since many outlier detection
techniques have been specifically developed for certain application
domains [8, 12, 13]; Second, most outlier detection methods highly
depend on their hyper-parameter settings; Third, the contamination
ratio of outliers in the given task is usually unknown.

Recently, efforts have been made to integrate various outlier
detection algorithms into a single package. Existing approaches [14,
21] contain different outlier detection methods with various pro-
gramming languages, yet they do not tackle with optimal pipeline
design as searching and exploration problems, and do not cater
specifically to backend-servers for large-scale applications.

In the meanwhile, a large focus of the machine learning com-
munity has been to find better hyper-parameter settings, which
has been successfully tackled using Bayesian optimization, rein-
forcement learning, etc., and forms a core component of AutoML
systems. However, less attention has been paid to finding a good
solution for an end-to-end, joint optimization problem including
multiple components, especially in real-world data mining tasks.

To bridge the gap, we present PyODDS, a full-stack, end-to-
end system for outlier detection. PyODDS has desirable features
from the following perspectives. First, to our best knowledge, PyO-
DDS describes the first attempt to incorporate automated machine
learning with outlier detection, and belongs to one of the first
attempts to extend automated machine learning concepts into real-
world data mining tasks. Second, we carefully design an end-to-end
framework for outlier detection, including database operations and
maintenance, the search process of automated outlier detection (in-
cluding the search space and the search strategy design). Finally, we
present a visual analytic system based on our proposed framework
for demonstration.

2 PYODDS SYSTEM ARCHITECTURE

The pipeline from query data to evaluation and visualization is
outlined in Figure 1, which consists of 3 components. The first


https://doi.org/10.1145/3366424.3383530
https://doi.org/10.1145/3366424.3383530

RIGHTS

WWW ’20 Companion, April 20-24, 2020, Taipei, Taiwan

(1) DB Operation

Query

Storage

Auto Algorithm Search

(2) Automated Outlier Detection

Yuening Li, Daochen Zha, Praveen Kumar Venugopal, Na Zou, and Xia Hu

(3) Visualization
o ° o
. H
° :
hd /\
il e

Auto Hyperparameter Tuning

Figure 1: Overview of PyODDS

component is the information extraction, which collects the source
data via query functions with flexible time-slices segmentation,
including user-info confirmation, database operation, and mainte-
nance. The second component is the suspicious outlier detection.
It detects suspicious instances with traditional outlier detection
approaches as an automated machine learning problem, including
the search space design and the search strategy development. The
last component is the visualization part, which designs for users
to understand the detection results better. In the following subsec-
tions, we focus on the first and second components. We will discuss
the visualization in Section 4.

2.1 Information Extraction

In this component, we extract the information from a specific time
range through database operations. PyODDS includes database
operation functions for client users: (1) connect_server function
allows the client to connect the server with host address and user
information for safety verification; (2) query_data function designs
for flexible time-slices segmentation.

2.2 Automated Outlier Detection

To detect suspicious outliers, we need to find the best pipeline
configuration. We formulate the problem of finding the best policy
as a conjunctive search problem. In this component, our method
consists of two subsections: a search space and a search strategy.

2.2.1 Search Space. In our search space, a policy consists of sub-
policies as a batch of outlier detection algorithms. Additionally, the
policy also contains the hyper-parameters as another conditional
sub-policy: 1) specific hyper-parameter settings corresponding to
each algorithm sub-policy which controls the learning process; 2)
the contamination ratio which determines the portion of outliers
corresponding to the given data source.

Each algorithm we included also comes with a default range of
hyper-parameter settings. Within each algorithm sub-policy, hyper-
parameters which might be discrete, ordinal, or continuous, need
to be optimized in the meanwhile.

2.2.2  Search Strategy. Following the search space setting we pro-
posed above, we define the problem of automated outlier detection
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with algorithm selection and hyper-parameter tuning as follows. Let
A = {A1, Az, ..., AN} be a set of outlier detection algorithms, and
A ={A1, A2, ..., AN} be the set of corresponding hyper-parameters.
We assume A is given. Let D74 and D% be the training set
and validation set, respectively. Denote M(A®, A%, ptrain Z)v“l)
as the performance on D?% in terms of metric M when trained
on D4 with algorithm A C A and corresponding hyper-
parameters A5 C A. The algorithm is to find optimal solution A*, 1*
via observation history . We define the objective as

A*, A" €  argmax M(AS,AS,Z)"“M,Z)WI).

ASCA,ASCA*

1)

Algorithm 1 Optimization Process
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To get a step further, Sequential Model-Based Global Optimiza-
tion (SMBO) algorithms have been used in many applications where
evaluation of the fitness function is expensive, i.e., automated
machine learning tasks [3]. To optimize the evaluation function
M(AS, AS, Dirain, Z)v“l), we optimize the criterion of Expected
Improvement, the expectation under A*, A* when y = M(A*, A%,
pirain pvaly pegatively exceed the threshold y*:
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p(x)

(2)
where the point x* that maximizes the surrogate (or its transfor-

mation) becomes the proposal for where the function should be
evaluated.
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The tree-structured Parzen estimator (TPE) models p(x|y) by
transforming to a generative process, which replaces the distribu-
tions of the configuration prior to non-parametric densities. We
borrow the strategy in [3] here to minimize the EI. We keep the
Estimation of Distribution (EDA, [10]) approach on the discrete
part of our search space (algorithm selection and discrete hyper-
parameters), where we sample candidate points according to bino-
mial distributions, while we use the Covariance Matrix Adaptation
- Evolution Strategy, a gradient-free evolutionary algorithm (CMA-
ES, [5]) for the remaining part of our search space (continuous
hyper-parameters). The whole optimization process can be summa-
rized in Algorithm 1.

3 EXPERIMENTAL EVALUATION

3.1 Data Source

The time-series data, which is used to train and evaluate PyODDS,
comes from a benchmark dataset, NAB corpus [2]. NAB corpus
contains 58 different individual tasks with ground-truth. The rea-
sons why we employ this data source are in three folds. First, NAB
corpus provides fine-grained labels, where the core principles in
independence, transparency and fairness guarantee. Second, the
data in NAB corpus are ordered, timestamped, which cover a varies
of real-world application scenarios, including server monitor logs
from AmazonCloudwatch service, online advertisement clicking-
rates, real-time traffic transportation, and collection from Twitters
with trading related contents. Third, each raw data file is a dic-
tionary of key-value pair, which is naturally to be represented as
tabular data that meets the requirements of the backend database
service in the PyODDS.

3.2 Algorithm Space Configurations

We implemented 13 state-of-the-arts outlier detection algorithms
as the search space, including statistical approaches, and recent
neural network frameworks. In the meanwhile, in order to support
both static and time series data analysis, the search space covers
algorithms with different settings.

3.3 Detection Results Evaluation

In this section, we empirically investigate the performance of Py-
ODDS to answer the following questions: first, how does the al-
gorithm with hyper-parameters discovered by PyODDS compare
with state-of-the-art handcrafted algorithms? Second, how does
the search process affect performance?

In Table 1, we show the performance on the NAB corpus. We
follow the default setting in NAB as the scoring algorithm, which
uses a scaled sigmoidal scoring function to quantify the detection
performance. The smooth score function ensures that small labeling
errors will not cause large changes in reported scores. The eval-
uation matrix includes the standard profile, reward low FPs, and
reward low FNs. The standard profile assigns TPs, FPs, and FNs with
relative weights, and the latter two profiles accredit greater penal-
ties for FPs and FNs, respectively. For more detailed definitions,
please refer to the default setting [11].

To answer the first question, we use PyODDS to find the best
policies on the NAB corpus. As can be seen from Table 1, the outlier
detection solution discovered by PyODDS architecture achieves
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Model ‘ Standard Profile Reward Low FP Reward Low FN
Perfect 100 100 100
CBLOF [7] 94.56 93.29 96.68
HBOS [1] 91.86 95.74 93.47
IFOREST [15] 92.44 92.10 94.38
KNN [18] 90.76 96.12 93.42
LOF [4] 92.61 88.78 89.86
OCSVM [19] 88.63 94.60 91.31
PCA [20] 93.15 94.50 96.28
RobustCovariance 96.68 95.27 94.76
SOD [9] 78.46 78.46 82.93
AUTOENCODER [6] 94.74 96.41 93.64
DAGMM [22] 85.27 83.35 90.21
LSTMAD [16] 93.19 95.18 92.43
LSTMENCDOC [17] 94.31 89.23 89.23
RANDOM 87.38 90.79 86.90
PyODDS 96.68 95.27 94.76

Table 1: Test performance comparison for outlier detection
algorithms: the state-of-the-art algorithms, the optimal so-
lution found by random search baseline, the optimal solu-
tion found by PyODDS.

competitive performance with current state-of-the-art models: the
handcrafted algorithms, and random searched results. It shows
that PyODDS could find optimal solutions within a large range of
configurations for different detection tasks.

For the second question, we conduct the search process in the
same search space with different search strategies. As can be seen
from Figure 2, PyODDS is more efficient in finding the well-performed
architectures during the search progress. Comparing with the ran-
dom search, the top-5 architectures discovered by PyODDS have
better performance (F1-score) and could convergence faster on
different datasets. It shows the effectiveness of the search strat-
egy PyODDS implemented could enhance the performance and
accelerate the search efficiency.

4 DEMONSTRATION

PyODDS is composed of a frontend and a server backend. Our sys-
tem is written in Python and uses Apache Spark as the server back-
end and TDengine as the database support service. We demonstrate
our system based on the real-world datasets from the Numenta
Anomaly Benchmark (NAB) corpus [2].

First, after selecting the data source and time range, our system
will automatically find an algorithm with default hyper-parameter
settings from the search space, and show the detection results.
Tlustrated by Figure 3(a), we provide the normalized value from
the original time series as the blue line, and outlier score as orange
line, to help users understand the data distribution in the original
data source, as well as the detection results. Lower outlier score
indicates that the data point is considered “normal”. Higher values
indicate the presence of an outlier in the data.

In addition, PyODDS provides time series analysis tools for users
to better understand the data source. Illustrated in Figure 3(b), PyO-
DDS decomposes the original time series as a combination of level,
trend, seasonality, and residual components. The residual values
could also act as denoters for outlier detection in time-series. In the
meanwhile, in Figure 3(c), PyODDS estimates the probability den-
sity function of the values in each timestamp, which provides a com-
prehensive scope of the data distribution in the original data source.
According to the search strategy and search space we proposed in
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Figure 2: Progression of top-5 averaged performance of different search methods, i.e., Random Search and PyODDS.
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Figure 3: Demonstration of using PyODDS in visualizing prediction result

the previous sections, we also provide trace logs to illustrate the
search process for records. After several iterations of the search
process, the selected algorithms with specific configurations are
listed in Figure 3(d)). As shown in the user case, extreme values and
spikes without seasonal patterns (i.e., in the time stamp 2011-07-15,
etc) have larger outlier score than the rest majority as normal cases
(shown in (a) and (c)), as well as larger residual value after time
series decomposition (shown in (b)). Current best solution is the
sub-policy OCSVM with specific hyperparameter settings.

5 CONCLUSION

In this demo, we propose an end-to-end approach to detect outliers,
and demonstrate the prediction results for users to better under-
stand the data source. PyODDS automatically search an optimal
outlier detection pipeline for a new dataset at hand out of a defined
proposed search space via the proposed search strategy.
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