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Abstract

We present RLCard, a Python platform for rein-
forcement learning research and development in
card games. RLCard supports various card en-
vironments and several baseline algorithms with
unified easy-to-use interfaces, aiming at bridging
reinforcement learning and imperfect information
games. The platform provides flexible configura-
tions of state representation, action encoding, and
reward design. RLCard also supports visualizations
for algorithm debugging. In this demo, we show-
case two representative environments and their vi-
sualization. We conclude this demo with chal-
lenges and research opportunities brought by RL-
Card. A video is available on YouTube1.

1 Introduction
Reinforcement learning (RL) is a promising paradigm to-
wards Artificial Intelligence (AI). Through interacting with
the environment, RL aims to train an agent to make sequential
decisions to achieve a goal by exploiting reward signals [Sut-
ton and Barto, 2018]. With deep neural networks as func-
tion approximators, deep reinforcement learning (DRL) has
recently achieved breakthroughs in various domains, such
as Atari games [Mnih et al., 2015], Go game [Silver et al.,
2017], and continuous control [Lillicrap et al., 2015].

Out of these achievements, however, DRL is still imma-
ture and not ready to be applied in many real-world problems.
Current DRL algorithms are often less successful when deal-
ing with long horizons, multiple agents, large decision space
or sparse reward. Addressing these challenges is essential to
bringing DRL to broader applications.

Card games are ideal testbeds for advancing DRL since
many games have one or more of the above challenges. For
example, Texas Hold’em is played by multiple players with
large decision space, where each player needs to play against
the other player and reason about the other players’ cards
that are hidden from her sight. Another example is a popu-
lar Chinese poker game Dou Dizhu, which suffers from long

∗Those authors contributed equally to this project.
1https://youtu.be/krK2jmSdKZc
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Figure 1: RLCard wraps card games with unified interfaces (left).
RLCard helps users develop algorithms (right).

sequences, sparse reward, and large action space with an ex-
plosion of card combinations. These card games are nice
abstractions of many real-world problems. Moreover, card
games are easy to understand with huge popularity. We usu-
ally do not need to spend efforts on learning the rules before
we can dive into algorithm development.

In this demo, we present RLCard2, a platform designed
for reinforcement learning research and development in card
games. RLCard aims at providing easy-to-use interfaces and
evaluation tools so that users can focus on algorithm develop-
ment instead of engineering efforts on games.

2 RLCard Platform
An overview in shown in Figure 1. RLCard provides unified
interfaces for seven popular card games, including Blackjack,
Leduc Hold’em (a simplified Texas Hold’em game), Limit
Texas Hold’em, No-Limit Texas Hold’em, UNO, Dou Dizhu
and Mahjong. Moreover, RLCard supports flexible environ-
ment design with configurable state and action representa-
tions. Last but not least, RLCard provides visualization and
debugging tools to help users understand their algorithms.

2.1 Interface Design
In RLCard, each agent has a local view of the game. The
states are all the possible observations from the view of an
agent, such as cards in hand and community cards. The ac-
tions are the legal moves of a player, such as “check” in Leduc
Hold’em and “33” in Dou Dizhu.

2https://github.com/datamllab/rlcard
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Figure 2: Visualization modules in RLCard of Dou Dizhu (left) and Leduc Hold’em (right) for algorithm debugging. The Control Panel
provides functionalities to control the replay process, such as pausing, moving forward, moving backward and speed control. The Analysis
Panel displays the top actions of the agents and the corresponding probabilities.

# I n i t i a l i z e t h e e n v i r o n m e n t
env = r l c a r d . make ( ’ doud izhu ’ )

# I n i t i a l i z e random a g e n t s
a g e n t = RandomAgent ( )
env . s e t a g e n t s ( [ agen t , agen t , a g e n t ] )

# Genera te da ta from t h e e n v i r o n m e n t
t r a j e c t o r i e s , p a y o f f s = env . run ( )

Listing 1: Example function calls.

Basic Interface We provide a run function which conve-
niently collects the data of a complete game. It directly gen-
erates payoffs and game data, which are organized as transi-
tions, i.e., (state, action, reward, next state, done). This in-
terface is designed for algorithms that do not need to traverse
the game tree. An example of running Dou Dizhu with three
random agents is sown in Listing 1.

The obtained trajectories can be used to train any deep
reinforcement learning algorithms such as Deep Q-Learning
(DQN) [Mnih et al., 2015]. The payoffs provide the results
of the game, such as win rates. One can also easily replaces
RandomAgent with her own agent.

Advanced Interfaces We also provide interfaces that operate
upon the game tree. We define a step function, which moves
the environment to the next state given the current action. To
enable traversing backward, we provide a step back func-
tion, which traverses back to the previous state. The deign of
step and step back is similar to traditional tree-based inter-
face. Specifically, step is corresponding to accessing child
node, and step back would access the parent node. This de-
sign enables flexible node visiting strategies of the game tree,
such as external sampling MCCFR [Lanctot et al., 2009].

2.2 Baseline Algorithms
We implement several baseline algorithms so that users can
benchmark their algorithms against these existing models.
We implement two deep reinforcement learning algorithms,
including DQN [Mnih et al., 2015], and Neural Fictitious
Self-Play (NFSP) [Heinrich and Silver, 2016]. NFSP is a
deep reinforcement algorithm adapted for imperfect informa-
tion games. We also implement Counterfactual Regret Mini-
mization (CFR) [Zinkevich et al., 2008], which searches for
the best strategies upon the game tree. In addition, we im-
plement some rule-based agents as baselines. Many of the
baseline results are presented in [Zha et al., 2019a].

2.3 Evaluations and Visualizations
RLCard provides evaluation and visualization tools to help
users understand their algorithms, as shown in Figure 2.
Firstly, RLCard has a leader-board module, where users can
easily compare a new algorithm with existing baselines, i.e.,
the pre-trained models and the rule baselines. Secondly,
RLCard supports visualizations of replay data to enable al-
gorithm debugging. One can analyze the top actions of
the agents with the visualization modules to understand the
strengths and weaknesses of the agents. The users can also
put their trained models into RLCard as baselines.

3 Conclusions
Card games are nice abstractions of many real-world prob-
lems. RLCard brings many challenges, such as long horizons,
multiple agents, large decision space and sparse reward, and
also research opportunities for tackling these challenges. In
the future, we plan to incorporate more recent RL techniques,
such as PPO [Schulman et al., 2017], SAC [Haarnoja et al.,
2018], and better replay buffer [Zha et al., 2019b]. We will
also support more card games, such as Gin Rummy.
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