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Distributed Recommender System

Combining data-parallelism and model-parallelism.
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Embedding Table Placement Problem

e Problem Setting
e We consider embedding table placement on GPU devices.
e Embedding accounts for 48% and 65% of the computation and
communication costs in production model.
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Embedding Table Placement Problem
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Key Challenges

e Challenges

e Operation fusion, which uses a single operation to subsume multiple tables,
makes it hard estimate cost.

e The adopted embedding tables and the available devices can change
frequently (e.g., machine learning engineers may conduct experiments with
various table combinations and numbers of devices).
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Formulation of MDP

e Markov Decision Process
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DreamShard Framework
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DreamShard Framework
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Main Results

e Observations

e DreamShard outperforms
baselines significantly.

e DreamShard can generalize
well (test performance is
similar to train performance).
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Task |No strategy | Human Experts RL
| Random | Size-based | Dim-based | Lookup-based [ Size-lookup-based | RNN-based |  DreamShard

DLRM-20 (4) Train [24.0+0.6 [22.740.0 (+5.7%) |21.3£0.0 (+12.7%)|19.140.0 (+25.7%) |19.12£0.0 (+25.7%) | 22.440.5 (+7.1%) |18.61+0.2 (+29.0%)
Test |23.0+0.5 [21.74+0.0 (+6.0%) |19.9£0.0 (+15.6%)|18.310.0 (+25.7%) |18.42£0.0 (+25.0%) | 20.940.3 (+10.0%) [17.61+0.2 (+30.7 %)
DLRM-40 (4) Train [41.3+0.2 [39.6+0.0 (+4.3%) |37.4=£0.1 (+10.4%)|33.610.0 (+22.9%) |33.6£0.1 (+22.9%) | 39.240.7 (+5.4%) |32.8+0.3 (+25.9%)
Test |41.1£0.5 [40.340.0 (+2.0%) |37.3£0.0 (+10.2%)|33.010.1 (+24.5%) |33.240.0 (+23.8%) |39.2+ 1.1 (+4.8%) |32.41-0.3 (+26.9%)
DLRM.60 (4) | TF2n[S77E08 |S6.62£0.1 (+19%) 52900 (+9.1%) |49.20.1 (+17.3%)|49.3£0.0 (+17.0%)|55.5£09 (+4.0%) |47.6::0.4 (+21.2%)
00 Test |58.1+0.6 [59.6+0.1 (-2.5%) |53.7£0.0 (+8.2%) |48.710.2 (+19.3%)[49.1+£0.1 (+18.3%) | 56.040.7 (+3.8%) |47.91+0.7 (+21.3%)
DLRM-80 (4) |Trin|757£10 760200 (04%) |70.0:£03 (+8.1%) |64.82:0.0 (+16.8%)|65.3%0.1 (+15.9%)|73.2:£2.7 (+34%) |6220.2 (+21.7%)
Test |74.54+0.8 |77.7402 (-4.1%) [69.940.4 (+6.6%) |64.1£0.2 (+16.2%)|65.140.0 (+14.4%) | 72.94+2.4 (+2.2%) |62.7--0.3 (+18.8%)
DLRM-100 (4)| TR 91817 |04.1£03 (24%) 86,703 (+59%) |81204 (+13.1%)|822£02 (+11.7%)|94.5£10.7 (-2.9%) | 8.4:£0.6 (+17.1%)
) ( Test |94.5+6.5 [95.440.0 (-0.9%) |84.7£0.4 (+11.6%)|79.51+0.3 (+18.9%)|80.840.3 (+17.0%) |94.8+13.0 (-0.3%) |77.810.8 (+21.5%)
DLRM-40 (8) Train [15.6+0.4 [14.14+0.0 (+10.6%)|13.4£0.1 (+16.4%) |9.8+£0.0 (+59.2%) [9.940.0 (+57.6%) |16.240.8 (-3.7%) |9.8+0.6 (+59.2%)
Test [15.240.2 [14.5+0.0 (+4.8%) |13.240.0 (+15.2%)|9.5+0.0 (+60.0%) [9.540.0 (+60.0%) |16.0+1.1 (-5.0%) |9.4+0.5 (+61.7%)
DLRM-80 (8) Train [25.040.2 [24.04+0.0 (+4.2%) |21.7£0.0 (+15.2%)|17.140.0 (+46.2%) |17.5£0.0 (+42.9%) | 51.443.9 (-51.4%) [16.110.3 (+55.3%)
Test |25.24+1.3 [25.6+0.5 (-1.6%) |20.8+0.0 (+21.2%)|16.740.2 (+50.9%) [16.9+£0.1 (+49.1%) | 53.444.6 (-52.8%) [16.110.4 (+56.5%)
DLRM-120 (8) Train [34.040.3 [32.34+0.0 (+5.3%) |29.840.0 (+14.1%)|24.54-0.0 (+38.8%) |25.3+0.0 (+34.4%) | 58.642.7 (-42.0%) |23.31+0.2 (+45.9%)
Test |33.5+0.5 [35.0+0.0 (-4.3%) |29.2£0.0 (+14.7%)|23.710.0 (+41.4%) |24.5£0.0 (+36.7%) | 58.7+3.1 (-42.9%) |22.81+0.2 (+46.9%)
DLRM-160 (8) Train [42.840.3 [41.6+0.0 (+2.9%) |39.0£0.0 (+9.7%) |32.040.0 (+33.7%)|32.7+£0.0 (+30.9%) | 58.3%3.5 (-26.6%) |30.31+0.2 (+41.3%)
Test |41.1+0.0 [42.440.0 (-3.1%) |36.4£0.0 (+12.9%)|30.840.0 (+33.4%) |31.6£0.0 (+30.1%) | 59.345.4 (-30.7%) |29.61+0.2 (+38.9%)
DLRM-200 (8) Train |[51.5+1.2 [48.240.0 (+6.8%) |48.0£0.0 (+7.3%) |38.94-0.0 (+32.4%)|39.9+0.0 (+29.1%) | 68.742.4 (-25.0%) |37.21+0.2 (+38.4%)
Test |50.74+0.2 [50.84+0.0 (-0.2%) |44.8+0.0 (+13.2%)|38.010.0 (+33.4%) |38.6£0.0 (+31.3%) | 70.442.8 (-28.0%) |36.410.3 (+39.3%)
Prod-20 (2) Train [41.340.7 [43.440.0 (-4.8%) |37.0£0.0 (+11.6%)|44.24-0.0 (-6.6%) |45.84+0.0 (-9.8%) |38.040.3 (+8.7%) |36.31+0.3 (+13.8%)
Test [42.8-4-04 |46.140.0 (-7.2%) |39.540.0 (+8.4%) |45.94£0.0 (-6.8%) |45.740.0 (-6.3%) |39.340.6 (+8.9%) |37.5+0.2 (+14.1%)
Prod-40 (4) Train [35.140.3 |39.440.0 (-10.9%) [31.340.0 (+12.1%)|36.4£0.0 (-3.6%) |38.840.0 (-9.5%) |33.942.5 (+3.5%) |28.3+0.3 (+24.0%)
o Test |38.3+£0.3 [43.64-0.0 (-12.2%) |33.5£0.0 (+14.3%) |37.410.0 (+2.4%) |40.1£0.0 (-4.5%) |36.7+2.8 (+4.4%) |30.410.7 (+26.0%)
Prod-80 (8) Train [43.240.2 [44.31+0.0 (-2.5%) [39.040.0 (+10.8%)43.740.0 (-1.1%) |49.3+0.0 (-12.4%) |56.646.8 (-23.7%) |33.6+0.9 (+28.6%)
° Test [47.740.4 [53.940.0 (-11.5%) |41.940.0 (+13.8%)|46.140.0 (+3.5%) [49.6+0.0 (-3.8%) |62.54+4.2 (-23.7%) |35.21+0.8 (+35.5%)
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Takeaways

e Summary
e \We explore embedding table placement/sharding, a direction that has been
rarely explored.
e We propose DreamShard, which learns estimated MDP and an RL agent.
e DreamShard significantly outperforms heuristic baselines.
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