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What is Experience Replay

: Environment -
reward lstate action
Agent
sampIeT store
Replay
[ Bi|Ba2| By | Ba| - | By Buffer

* Definition: A memory buffer that stores past transitions

(experiences) which are replayed for later use.

* A key technique behind contemporary off-policy RL algorithms. It

greatly stabilizes the training and improves the sample efficiency.
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Replay Strategy Matters

* Uniform Sampling: Sample transitions in the memory with equal

probabilities. Applied in most off-policy algorithms.

* Prioritized Experience Replay [1]: Prioritize the transitions with
higher temporal differences (TD) errors. Improved performance for

DQN on Atari environments.
* Various Memory Size [2][3]: Manage the size of the replay buffer.

* Remember/Forget Experience [4]: Selectively remember/forget

experience can improve the performance.

[1] Marcelo Gomes Mattar and Nathaniel D Daw. "Prioritized experience replay.” ICLR 2016.

[2] Zhang and Sutton. "A deeper look at experience replay" NIPS Deep Reinforcement Learning Symposium, 2017.
[3] Liu and Zou. "The effects of memory replay in reinforcement learning”. Arxiv 2017.

[4] Novati and Koumoutsakos. "Remember and forget for expe- rience replay”. ICML 2019.
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Experience Replay Optimization (ERO)
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 Humans tend to replay the memories that will lead to the most
rewarding future decisions.
 We are motivated to use the feedback from the environment as a

rewarding signal to adjust the replay strategy.
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Sampling with Replay Policy
* A priority score function ¢(f3i|9¢) € (0,1) where fz, are some
features for a transition.
* Given the scores for all the transitions
A ={p(f5,|60%)|B; € B}.

* Before feeding into standard RL training, we narrow down all the

transitions to a subset of transitions B>:
I~Bernoulli(2),
B* ={B;|B; € B AI; = 1}.

* Then B®is used to update the agent with standard procedures.
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Training with Policy Gradient
* The replay-reward is defined as the improvement of the

cumulative reward:

r’ =nrt —1r5.
where ;v and 755, are the recent cumulative rewards.
* By using the REINFORCE trick, we can calculate the gradient of the
improvement J w.r.t 69:

Vood = V9¢[EI[TT]
= [Ej[r"Vye logP(|¢)].

* Where ¢ is the abbreviation for ¢(f73i|9¢).
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Applying to Off-Policy Algorithms

Algorithm 1 ERO enhanced DDPG DDPG  4Algorithm 2 UpdateReplayPolicy
1:| Initialize policy 7, replay policy ¢, buffer B Input:
2:| for each iteration do Cumulative reward of current policy r¢
3:|  for each timestep ¢ do Cumulative reward of previous policy 7%,
4: Select action a; according to 7w and state sy Buffer B
5: Execute action a; and observe s;y; and 7 Output:
6 Store transition (s¢, as, 14, 5¢11) into B Sampled subset B°
7 if episode is done then
8: Calculate the cumulative reward r¢ / 1: Calculate replay-reward based on Eq. (3)
9- if 7¢, # null then 2:| for each replay updating step do
10: IB° = UpdateReplayPolicy(r¢, r<,, B) | 3| Randomly sample a batch {B;} from B Update Replay Policy
11: end 1T 4:]  Update replay policy based on Eq. (8)
12: Set ¢, « r¢ 5:_end for
13: end if 6:[ Sample a subset B° from B using Eq. (2) | Sample New
14: __end for _DPG T T
15:] for each training step do ransitions
16: Uniformly sample a batch {B7} from B*
17: Update the critic of 7 with Eq. (9) and (10)
18: Update the actor of 7 with Eq. (11)
19: Update target networks with Eq. (12) and (13)
20: Update A for each transition in {B;}
21:| end for
22: end for
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Experimental Settings
* Baselines: Vanilla-DDPG, Proportional Prioritized Experience
Replay (PER-pro), Rank-based PER (PER-rank).
* Environments: Continuous control tasks from OpenAl gym.
* Implementation Details:
» DDPG implementation in OpenAl baselines.

» For ERO, three features are used: the reward of the
transition, the temporal difference (TD) error, and the

current timestep.

» The replay policy is MLP with two hidden layers (64-64).
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Effectiveness Evaluation
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* ERO outperforms Vanilla-DDPG and rule-based replay strateqgy (PER-

prop and PER-rank).
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Efficiency Evaluation
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* ERO only requires slightly more computation than Vanilla-DDPG for
replay policy update.
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Replay Policy Analysis

 The learned replay policy of
ERO samples more
transitions with low TD
errors in HalfCheetah (More
studies are needed to
understand this aspect in

the future work).

* ERO samples more recent

transitions than Vanilla-

DDPG.
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Conclusions

action

 Formulate experience replay as a learning problem.

* Propose ERO, a general framework for effective and efficient use

of replay memory.

* Conducted experiments on 8 continuous control tasks from

OpenAl Gym demonstrate the effectiveness of ERO.
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