

Experience Replay Optimization

Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou and Xia Hu

Department of Computer Science and Engineering, Texas A&M University

Emails: {daochen.zha, khlai037, zkxiong, xiahu}@tamu.edu

What is Experience Replay

- **Definition:** A memory buffer that stores past transitions (experiences) which are replayed for later use.
- A key technique behind contemporary off-policy RL algorithms. It greatly stabilizes the training and improves the sample efficiency.

Replay Strategy Matters

- Uniform Sampling: Sample transitions in the memory with equal probabilities. Applied in most off-policy algorithms.
- **Prioritized Experience Replay [1]:** Prioritize the transitions with higher temporal differences (TD) errors. Improved performance for DQN on Atari environments.
- Various Memory Size [2][3]: Manage the size of the replay buffer.
- **Remember/Forget Experience [4]:** Selectively remember/forget experience can improve the performance.

[1] Marcelo Gomes Mattar and Nathaniel D Daw. "Prioritized experience replay." ICLR 2016.

[2] Zhang and Sutton. "A deeper look at experience replay" NIPS Deep Reinforcement Learning Symposium, 2017.

[3] Liu and Zou. "The effects of memory replay in reinforcement learning". Arxiv 2017.

[4] Novati and Koumoutsakos. "Remember and forget for expe- rience replay". ICML 2019.

Experience Replay Optimization (ERO)

- Humans tend to replay the memories that will lead to the most rewarding future decisions.
- We are motivated to use the feedback from the environment as a rewarding signal to adjust the replay strategy.

Sampling with Replay Policy

- A priority score function $\phi(\mathbf{f}_{\mathcal{B}_i}|\theta^{\phi}) \in (0,1)$ where $\mathbf{f}_{\mathcal{B}_i}$ are some features for a transition.
- Given the scores for all the transitions

 $\boldsymbol{\lambda} = \{ \phi (\mathbf{f}_{\mathcal{B}_i} | \theta^{\phi}) | \mathcal{B}_i \in \mathcal{B} \}.$

• Before feeding into standard RL training, we narrow down all the transitions to a subset of transitions \mathcal{B}^s :

 $\mathbf{I} \sim \text{Bernoulli}(\boldsymbol{\lambda}),$ $\mathcal{B}^{s} = \{\mathcal{B}_{i} | \mathcal{B}_{i} \in \mathcal{B} \land \mathbf{I}_{i} = 1\}.$

• Then \mathcal{B}^s is used to update the agent with standard procedures.

Training with Policy Gradient

• The replay-reward is defined as the improvement of the cumulative reward:

$$r^{r} = r_{\pi}^{c} - r_{\pi'}^{c}.$$

where r_{π}^{c} and $r_{\pi'}^{c}$ are the recent cumulative rewards.

• By using the REINFORCE trick, we can calculate the gradient of the improvement \mathcal{J} w.r.t θ^{ϕ} :

$$\nabla_{\theta^{\phi}} \mathcal{J} = \nabla_{\theta^{\phi}} \mathbb{E}_{\mathbf{I}}[r^{r}]$$
$$= \mathbb{E}_{\mathbf{I}}[r^{r} \nabla_{\theta^{\phi}} \log P(\mathbf{I}|\phi)].$$

• Where ϕ is the abbreviation for $\phi(f_{\mathcal{B}_i}|\theta^{\phi})$.

Applying to Off-Policy Algorithms

Algorithm 1 ERO enhanced DDPGAlgorithm 2 UpdateReplayPolicy			
1:	Initialize policy π , replay policy ϕ , buffer \mathcal{B}	Input:	
	for each iteration do	Cumulative reward of current policy r_{π}^{c}	
3:	for each timestep t do	Cumulative reward of previous policy $r_{\pi'}^c$	
4:	Select action a_t according to π and state s_t	Buffer \mathcal{B}	
5:	Execute action a_t and observe s_{t+1} and r_t	Output:	
6:	Store transition (s_t, a_t, r_t, s_{t+1}) into \mathcal{B}	Sampled subset \mathcal{B}^s	
7:	if episode is done then	•	
8:	Calculate the cumulative reward r_{π}^{c}	1: Calculate replay-reward based on Eq. (3)	
9:	if $r_{\pi'}^c \neq \text{null then}$	2: for each replay updating step do	
10:	$\mathcal{B}^s = \text{UpdateReplayPolicy}(r_{\pi}^c, r_{\pi'}^c, \mathcal{B})$	3: Randomly sample a batch $\{\mathcal{B}_i\}$ from \mathcal{B}	Update Replay Policy
11:	end if	4: Update replay policy based on Eq. (8)	
12:	Set $r^c_{\pi'} \leftarrow r^c_{\pi}$	5: end for	
13:	end if	6: Sample a subset \mathcal{B}^s from \mathcal{B} using Eq. (2)	Sample New
14:	end for DDPC		Transitions
15:	for each training step do		
16:	Uniformly sample a batch $\{\mathcal{B}_i^s\}$ from \mathcal{B}^s		
17:	Update the critic of π with Eq. (9) and (10)		
18:	Update the actor of π with Eq. (11)		
19:	Update target networks with Eq. (12) and (13)		
20:	Update λ for each transition in $\{\mathcal{B}_i\}$		
21:	end for	1	
22: end for			

Experimental Settings

- **Baselines:** Vanilla-DDPG, Proportional Prioritized Experience Replay (PER-pro), Rank-based PER (PER-rank).
- *Environments:* Continuous control tasks from OpenAI gym.
- Implementation Details:
 - > DDPG implementation in OpenAI baselines.
 - For ERO, three features are used: the reward of the transition, the temporal difference (TD) error, and the current timestep.
 - The replay policy is MLP with two hidden layers (64-64).

Effectiveness Evaluation

• ERO outperforms Vanilla-DDPG and rule-based replay strategy (PERprop and PER-rank).

Efficiency Evaluation

• ERO only requires slightly more computation than Vanilla-DDPG for replay policy update.

Replay Policy Analysis

- The learned replay policy of ERO samples more transitions with low TD
 errors in HalfCheetah (More studies are needed to
 understand this aspect in the future work).
- ERO samples more recent transitions than Vanilla-DDPG.

Conclusions

- Formulate experience replay as a learning problem.
- Propose ERO, a general framework for effective and efficient use of replay memory.
- Conducted experiments on 8 continuous control tasks from OpenAI Gym demonstrate the effectiveness of ERO.

Acknowledgement

• DATA Lab and collaborators

Data Analytics at Texas A&M (DATA Lab)

- National Science Foundation (NSF)
- Everyone attending the talk

Department of Computer Science and Engineering