Meta-AAD: Active Anomaly Detection with Deep Reinforcement Learning

Daochen Zha, Kwei-Herng Lai, Mingyang Wan and Xia Hu

Department of Computer Science and Engineering, Texas A&M University

Emails: {daochen.zha, khlai037, w1996, xiahu}@tamu.edu

Code: https://github.com/daochenzha/Meta-AAD
What is anomaly detection?

- **Goal**: Identify the data objects or behaviors that significantly deviate from the majority.
- **Applications**: Fraud detection, cybersecurity attack detection, medical diagnosis, etc.
- **Challenges**: High false-positive rate. Lots of false alarms.
- **Why high false-positive rate?** Most algorithms are unsupervised with assumptions on the anomaly patterns. There is usually discrepancy between the assumptions and real world applications.

Source: https://developer.mindsphere.io/apis/analytics-anomalydetection/api-anomalydetection-overview.html
Active Anomaly Detection (AAD)

• **Main Idea:** Correcting the assumptions with feedback from the experts.

• **Human-in-the-Loop:** (1) Select a query; (2) label the query; (3) adjust scores; (4) go to (1)

• **Observation:** The decision boundary evolves with more and more queries.
Problem Statement & Related Work

- **Given the dataset** \(X \) and a budget \(T \), in each iteration, we aim to select one instance \(X_i \) from \(X \) for query. An analyst will give a label \(y_i \) to indicate whether it is anomalous or not.

- **Objective:** Maximize the number of discovered anomalies when the budget \(T \) is used up. i.e., within \(T \) queries.

Existing solutions:
- **Active Anomaly Detection (AAD) [1]:** state-of-the-art method based on node re-weighting
- **Feedback-Guided Isolation Forest [2]:** active anomaly detector via online optimization
- **OJRank [3]:** re-rank the instances and select top-1 as feedback

Observation: They focus on making top-1 instance anomalous, but not long-term performance.

Meta-AAD: Optimizing the Performance with RL

- **Motivation:** RL can inherently balance long-term and short-term rewards.
- **Challenges:** (1) Huge decision space; (2) RL is not sample efficient.

- **How it works?** (1) Train in a streaming manner on labeled data. (2) Transfer to unlabeled data.
Training of Meta-Policy

- **State:** meta-features of an instance, including the unsupervised anomaly scores, distance to the labeled anomalies, and the distance to the labeled normalities.

- **Action:** 1 for query; 0 for not query.

- **Reward:** a positive reward of 1 if the queried instance is indeed anomaly; a negative reward of -0.1 if it is not; a reward of 0 if not queried.
Applying Meta-Policy to Unlabeled data

- **Step 1:** Select the instance with the highest probability of taking action 1 for query.
- **Step 2:** The analyst gives the label.
- **Step 3:** The meta-features are adjusted according to the feedback.
- **Step 4:** Repeat step 1 to 3 until budget is used up.

Nice Properties:

1. RL models long-term performance.
2. The policy can be directly transferred.
Basslines and Datasets

• **AAD**: Active Anomaly Detection [1] is a state-of-the-art method based on node re-weighting.

• **FIF**: Feedback-Guided Isolation Forest [2] is a recently proposed active anomaly detector via online optimization.

• **SSDO**: Semi-Supervised Detection of Outliers [3] also use label information.

• **Unsupervised**: We use Isolation Forest (IF) [4] as an unsupervised baseline.

• **Datasets**: We 24 real-world datasets from ODDS [5].

How does Meta-AAD perform on Benchmarks?

![Graphs showing performance of Meta-AAD and baselines on various benchmarks](image)

<table>
<thead>
<tr>
<th>Method</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIF [6]</td>
<td>2.208</td>
<td>2.333</td>
<td>2.312</td>
<td>2.396▲</td>
<td>2.708▲</td>
</tr>
<tr>
<td>Meta-AAD</td>
<td>2.062</td>
<td>1.917</td>
<td>1.750</td>
<td>1.479</td>
<td>1.375</td>
</tr>
</tbody>
</table>

| Improvement | 0.146 | 0.416 | 0.562 | 0.917 | 1.333 |

▲ Meta-AAD is significantly better than the baseline w.r.t. the Wilcoxon signed rank test (p < 0.01).

Observations:

1. Meta-AAD outperforms baselines.
2. Meta-AAD has stronger performance in the long-term
Ablation Study

Observations:

(1) All the proposed meta-features are helpful

(2) One dataset is enough for training, which suggests the meta-policy is indeed transferable.

(3) The negative reward can not be too large nor too small.

Fig. 4: Ablation study of Meta-AAD. We show the learning curves on Anntyroid, Mammography, Satimage-2 by dropping different features (top row), using different number of training datasets (mid row), and using different negative rewards for a missed query.
Efficiency & Sensitivity Analysis

Fig. 5: The average discovered anomalies across all the datasets given 100 queries with respect to the number of training steps (left) and different γ values (right).

Observations:

(1) It usually takes less than 2 minutes for training with one core on a PC.

(2) The hyperparameter γ can balance long-term and short-term performance.
Takeaways

Some insights:

(1) With very few labels, active learning can effectively correct the anomaly detector and boost the performance.

(2) The active learning strategy is transferable and can easily deployed.

Our contributions:

(1) We propose a practical framework, called Meta-AAD, which optimizes the performance of active anomaly detection with deep reinforcement learning.

(2) Extensive experiments are presented to validate our framework.

(3) We open-source the code and all the datasets to facilitate future research:

https://github.com/daochenzha/Meta-AAD
Acknowledgement

• DATA Lab and collaborators

Data Analytics at Texas A&M (DATA Lab)

• National Science Foundation (NSF)

• Everyone watching this video!