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What is anomaly detection?

Goal: Identify the data objects or behaviors that

significantly deviate from the majority.

* Applications: Fraud detection, cybersecurity attack .::
detection, medical diagnosis, etc. _ -
o
* Challenges: High false-positive rate. Lots of false .'.:-. o
alarms. .::3’.‘.0 O
*  Why high false-positive rate? Most algorithms are
unsupervised with assumptions on the anomaly source: htps://developer.mindsphere io/apis/analytics.

anomalydetection/api-anomalydetection-overview.html

patterns. There is usually discrepancy between the

assumptions and real world applications.
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Active Anomaly Detection (AAD)

*  Main Idea: Correcting the assumptions with feedback from the experts.

*  Human-in-the-Loop: (1) Select a query; (2) label the query; (3) adjust scores; (4) go to (1)

Probability
A Labeled Anomaly A Unlabeled Anomaly Labeled Normality . Unlabeled Normality

-4 -2 0 2 4 6 8
(a) Initial state (b) 15 queries (c) 30 queries

*  Observation: The decision boundary evolves with more and more queries.
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Problem Statement & Related Work

* Given the dataset X and a budget T, in each iteration, we aim to select one instance X; from

X for query. An analyst will give a label y; to indicate whether it is anomalous or not.
*  Objective: Maximize the number of discovered anomalies when the budget T is used up. i.e.,

within T queries.

Existing solutions:
* Active Anomaly Detection (AAD) [1]: state-of-the-art method based on node re-weighting

*  Feedback-Guided Isolation Forest [2]: active anomaly detector via online optimization

*  OJRANK [3]: re-rank the instances and select top-1 as feedback

Observation: They focus on making top-1 instance anomalous, but not long-term performance.

[1] Das, Shubhomoy, et al. Incorporating feedback into tree-based anomaly detection. arXiv:1708.09441 (2017).

[2] Siddiqui, Md Amran, et al. Feedback-guided anomaly discovery via online optimization. KDD, 2018.
[3] Lamba, Hemank, and Leman Akoglu. Learning on-the-job to re-rank anomalies from top-1 feedback. SDM, 2019.
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Meta-AAD: Optimizing the Performance with RL

*  Motivation: RL can inherently balance long-term and short-term rewards.

e Challenges: (1) Huge decision space; (2) RL is not sample efficient.

Query A Labeled Anomaly Unlabeled Anomaly
: * ; . Labeled Normality Unlabeled Normality
1 1 Relniaininle Maiaininie .
1 1 e e e e e
e ! : T :
1 1 ] In

: ! . Normal 1 , Reward ! t ! I > i
1 *I . 1 1
: | A Anomalous | ! ] ! i - , Query R ‘ i Rl
1 L ! 1 1 I 1 L 1 I L : é :
I I 1 1 "L 1 1 [

AfterK ! !
: Label : : S : : : : 6 Feedback : : ] - : :
1 1 1 tate | e —— 1 1 1 Queries | .
R oy b i w— Lo o EQ LA | A
Lo “\, ! Extract features ! . . Analyst . Lol ___

1
. ' ool ! . 1! I 1 1
| TTTTTo oo | Meta-Policy L : : o Detected
I Data stream I R ! A 1o Anomalies
) 1 | 1
Training Applying to unlabeled dataset

*  How it works? (1) Train in a streaming manner on labeled data. (2) Transfer to unlabeled data.
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Training of Meta-Policy

« State: meta-features of an instance, including the unsupervised anomaly scores, distance to

the labeled anomalies, and the distance to the labeled normalities.
* Action: 1 for query; O for not query.

* Reward: a positive reward of 1 if the queried instance is indeed anomaly; a negative reward

Of -0.1ifitis not; a reward of O if not queried. =~ ouery
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Applying Meta-Policy to Unlabeled data

e Step 1: Select the instance with the highest probability of taking action 1 for query.
e Step 2: The analyst gives the label.
* Step 3: The meta-features are adjusted according to the feedback.

e Step 4: Repeat step 1 to 3 until budget is used up.

A Labeled Anomaly Unlabeled Anomaly
%_ R . Labeled Normality Unlabeled Normality
. . . _Action X C et T !
Nice Properties: . \ e .
A :
(1) RL models long-term performance. -_i L AT 1 Query . o A
: : roy : : . ! AfterK_ ! !
. . i i Lo @8 Feedback , | —-! !
(2) The policy can be directly transferred. : A ey : .Q—>: A popQueries A
348 ________ : E i Analyst E E | ey
pali o i i Lo Detected
Meta-Policy L i ; ;o Anomalies

Applying to unlabeled dataset
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Basslines and Datasets

AAD: Active Anomaly Detection [1] is a state-of-the-art method based on node re-weighting.

*  FIF: Feedback-Guided Isolation Forest [2] is a recently proposed active anomaly detector via
online optimization.

* SSDO: Semi-Supervised Detection of Outliers [3] also use label information.

* Unsupervised: We use Isolation Forest (IF) [4] as an unsupervised baseline.

* Datasets: We 24 real-world datasets from ODDS [5].

[1] Das, Shubhomoy, et al. Incorporating feedback into tree-based anomaly detection. arXiv:1708.09441 (2017).

[2] Siddiqui, Md Amran, et al. Feedback-guided anomaly discovery via online optimization. KDD, 2018.

[3] Vercruyssen, Vincent, et al. Semi-supervised anomaly detection with an application to water analytics. ICDM, 2018.
[4] Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. ICDM, 2008

[5] http://odds.cs.stonybrook.edu/

Texas A&M University 8 Department of Computer Science and Engineering




How does Meta-AAD perform

e Meta-AAD
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Ablation Study

— w,d e Wl normality wlo nomaly Observations:
E ) / = ° / (1) All the proposed meta-features are helpful
" s _ _ © Mwee 7 (2) One dataset is enough for training, which suggests
5 i the meta-policy is indeed transferable.
§40 40 gg
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Fig. 4. Ablation study of Meta-AAD. We show the learn-
ing curves on Annthyroid, Mammography, Satimage-2 by
dropping different features (top row), using different number
of training datasets (mid row), and using different negative
rewards for a missed query.
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Efficiency & Sensitivity Analysis

s Performance with 100 queries
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Fig. 5: The average discovered anomalies across all the
datasets given 100 queries with respect to the number of
training steps (left) and different  values (right).

Observations:

(1) It usually takes less than 2 minutes for training with one core on a PC.

(2) The hyperparameter y can balance long-term and short-term performance.
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Takeaways
Some insights:

(1) With very few labels, active learning can effectively correct the anomaly

detector and boost the performance.

(2) The active learning strategy is transferable and can easily deployed.

Our contributions:

(1) We propose a practical framework, called Meta-AAD, which optimizes the

performance of active anomaly detection with deep reinforcement learning.
(2) Extensive experiments are presented to validate our framework.

(3) We open-source the code and all the datasets to facilitate future research:

https://qgithub.com/daochenzha/Meta-AAD
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