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Background: Exploration is an Open Challenge for RL

*  Whatis exploration? The ability of the agents to

discover novel states in the environments.

¥

*  Why we need exploration? Learning a good policy
with reinforcement learning relies on the ability of
discovering the novel states in the first place (the

rewards can be sparse).

*  How we can encourage exploration? The most popular
method for encouraging exploration is to give intrinsic

rewards based on uncertainty, e.g., count-based

exploration [1], curiosity driven exploration [2], etc. 4-room

[1] Bellemare, Marc G., et al. Unifying count-based exploration and intrinsic motivation. NeurlPS 2016.
[2] Pathak, Deepak, et al. Curiosity-driven exploration by self-supervised prediction. ICML 2017.
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Motivation: Exploration Needs to Generalize

*  Overfitting Issue: While Deep RL has made impressive progress in recent years, most of the
previous studies use the same singleton environment for training and testing. Recent
studies show that the agent trained in this way is susceptible to overfitting and may fail to
generalize to even a slightly different environment [1][2].

*  Procedurally-Generated Environments: To address this issue, some procedurally-generated

environments are proposed, where a different environment is generated in each episode.

[1] Rajeswaran, Aravind, et al. Towards Generalization and Simplicity in Continuous Control. NeurIPS 2017.
[2] Zhang, Amy, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in continuous reinforcement
learning. arXiv 2018.
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Motivation: Can Intrinsic Rewards Generalize?
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* 1D Maze as a Motivating Examples: The agent (red) needs to move right in each step to

reach a goal.

e Count-Based Exploration in Procedurally-Generated Environments: It is less effective

because visiting a novel state does not necessarily mean a good exploration behavior
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Motivation: Episode-Level Exploration

*  Why Humans can Generalize? Because humans often view the agent in episode-level
rather than state-level. For example, one can easily tell whether an agent has well
explored an environment by looking into the coverage rate of the current episode, even if

the current environment is totally different from the previous ones.
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A New Exploration Strategy that Can Generalize

* Episode-Level Exploration: We propose Exploration via Ranking the Episodes (RAPID)

Episodes .
Local Score
Environment < Global Score

Extrinsic Reward Rank with episodic scores
.
Intereaction
4
Imitation Learning
RL Update

Score = 0.99 Score = 0.98

Ranking Buffer

Figure 2: An overview of RAPID. The past episodes are assigned episodic exploration scores based
on the local view, the global view, and the extrinsic reward. Those highly scored episodes are stored
in a small ranking buffer. The agent is then encouraged to reproduce the past good exploration
behaviors, i.e., the episodes in the buffer, with imitation learning.
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Episodic Exploration Score

* Local Score: A local view of an episode. The number of district states in an episode divided

by the total number of states in this episode.

N, distinct
N, total

Slocal —

* Global Score: A score that also considers previous episodes. The mean count-based score of

the current episode.

Sg

1 5 1
7 Noow = /N(s)

*  Episodic Exploration Score: We further consider the extrinsic rewards. The final score is the

weighted sum of the three scores.

S = Wo Sext + w1 Slocal + w2Sglobal
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Episode-Level Exploration via Ranking

Algorithm 1 Exploration via Ranking the Episodes (RAPID)

1: Input: Training steps S, buffer size D, RL rollout steps 1T’
2: Initialize the policy 7, replay buffer D
3: for iteration = 1, 2, ... until convergence do

4:  Execute my for T" timesteps
. 5:  Update mg with RL objective (also update value functions if any)
Ranking 6: for each generated episode T do
7 Compute episodic exploration score S based on Eq. (4)
8: Give score S, to all the state-action pairs in 7 and store them to the buffer
9: Rank the state-action pairs in D based on their exploration scores
10: if D.length > D then
11: Discard the state-action pairs with low scores so that D.length = D
12: end if
13: forstep=1, 72, .., 5 do
Imitation Learning < 14: | Sample a batch from D and train 7y using the data in D with behavior cloning
15: end for
16: endtor
17: end for
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Results on MiniGrid Benchmarks

(a) MultiRoom-N7-S4 (b) MultiRoom-N10-S4 (c) MultiRoom-N7-S8  (d) MultiRoom-N10-S10

(e) KeyCorridor-S3-R2  (f) KeyCorridor-S3-R3 (g) KeyCorridor-S4-R3  (h) MultiRoom-N12-S10
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Results on MiniGrid Benchmarks
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(e) KeyCorridor-S3-R2 (f) KeyCorridor-S3-R3 (g) KeyCorridor-S4-R3  (h) MultiRoom-N12-S10

*  Observation 1: RAPID is fast, accelerating the convergence with up to 10X.

*  Observation 2: RAPID is effective. Only one that works in KeyCorridor-54-R3.
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Results on 3D Naviation Task

e - mEm o me. - L = RAPID

. e 0.6 |— PPO
:-: '-flln T Il? --. i
= = o = RANDOM
— : " e 0.4 —— curiosITY

utnun m e .
:-:. .? ; ) - - . o 0.2
-wll-ll e e :E
..- - ! -w 0.0
(c) Maze (d) Maze (top view
) ( P ) 0 1 2 3 4 5
timesteps le6

*  Observation: RAPID also works with raw images as inputs.
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Results on Sparse MujoCo Tasks

* Setting: The rewards are delayed until the last timestep of an episode.

*  Observation: RAPID also works with continuous action spaces.

(a) Walker2d (b) Hopper (c) InvertedPendulum (d) Swimmer
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Ablation Study

*  Observation 1: All the three scores and the ranking buffer helps.

*  Observation 2: Local score plays a key role (most of previous work only considers global view).

RAPID w/o local w/o global w/o reward w/o buffer w/o ranking
MR-N7S4 |0.787 £ 0.001 | 0.787 £ 0.000 | 0.787 & 0.001 | 0.781 & 0.002 | 0.000 & 0.000 | 0.002 =+ 0.002
MR-N10S4 | 0.778 4 0.000 | 0.778 4= 0.000 | 0.778 4= 0.001 | 0.775 & 0.002 | 0.000 = 0.000 | 0.000 =+ 0.000
MR-N7S8 0.678 £ 0.001 | 0.677 +0.002 | 0.677 £ 0.002 |0.652 + 0.004 | 0.000 = 0.000 | 0.000 £ 0.000
MR-N10S10 | 0.632 4= 0.001 | 0.238 £ 0.288 | 0.630 = 0.002 |0.604 =+ 0.010 | 0.000 = 0.000 | 0.000 = 0.000
MR-N12S10 | 0.644 4+ 0.001 | 0.001 £ 0.001 | 0.633 & 0.005 |0.613 = 0.007 | 0.000 = 0.000 | 0.000 =+ 0.000
KC-S3R2 0.934 £ 0.004 | 0.933 4+ 0.002 |0.934 4 0.000 | 0.929 + 0.003 | 0.018 £ 0.008 | 0.527 £ 0.380
KC-S3R3 0.922 £ 0.001 | 0.885 4+ 0.022 | 0.912 + 0.003 |0.903 £ 0.002 | 0.012 £ 0.007 | 0.013 £ 0.006
KC-S4R3 0.473 £ 0.087 | 0.150 +0.095 | 0.244 +0.144 | 0.035 £ 0.035 | 0.000 £ 0.000 | 0.001 £ 0.001

Table 1: Performance of RAPID and the ablations on MiniGrid environments. The mean maximum
returns and standard deviations are reported. MR stands for MultiRoom; KC stands for KeyCorridor.
Learning curves are in Appendix C.
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Pure Exploration on MultiRoom-N12-S10
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(c) Pure exploration  (d) Local exploration score

Observation 1: RAPID works well even without extrinsic rewards.

* Observation 2: RIDE is indirectly optimizing local exploration score.
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Takeaways
Some insights:

(1) Episode-level score could better generalize in procedurally-generated environments.

(2) Episode-level exploration also works well in singleton setting (e.g., MuJoCo) and continuous state/action

spaces.

(3) Ranking and imitating good exploration behaviors is very effective (a good exploration behavior could be

[m] s [m]

leveraged more than once)

Our contributions:

(1) We propose a practical algorithm, named RAPID, for

efficient exploration.
n

(2) Unlike traditional state-level intrinsic rewards, we E

approach sample efficiency for hard-exploration

problems in episode-level. Code: https://qithub.com/daochenzha/rapid

(3) Our code is made publicly available.
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