

RICE UNIVERSITY School of Engineering Department of Computer Science

Revisiting Time Series Outlier Detection: Definition and Benchmark

*Kwei-Herng Lai, *Daochen Zha, ^{\$}Junjie Xu, [#]Yue Zhao, *Guanchu Wang, *Xia Hu

> *Rice University *Carnegie Mellon University \$Pennsylvania State University

DATA Lab at Rice University

Daochen Zha (daochen.zha@rice.edu) 1

Detecting Outliers From Time Series Data

Outlier Detection

- Find the weirdest/abnormal part of the data
- Unsupervised/Semi-supervised training
- Time Series Applications

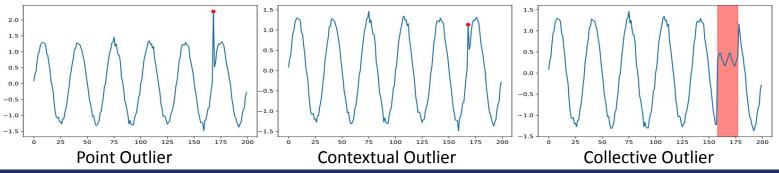
• Main Challenge: Anomalies are Rare

- Only attribute of the historical anomalies are accessible.
- Context of future anomalies are unknown.

Outliers Definitions

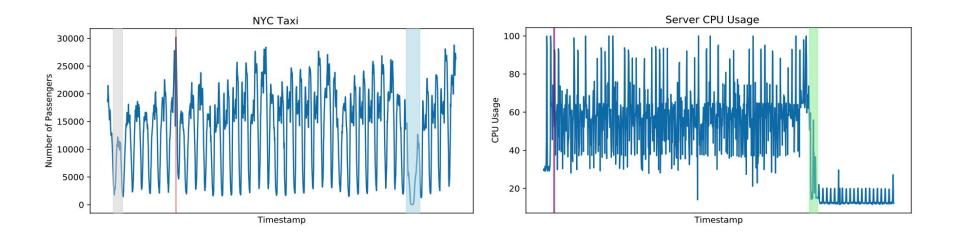
• Outlier Definition:

- Point (left figure):
 - Data point that is anomalous comparing to the rest of the data.
 - Extreme values lead to serious consequences —> Easy to detect
- Contextual (middle figure):
 - Data point that is anomalous under certain context.
 - Context is often defined unclearly —> Hard to detect.
- Collective (right figure):
 - Collection of data points that is anomalous with respect to entire dataset.
 - Individual points of the outlier may not be outlier and the scenario of collection is unknown —> Hard to detect.



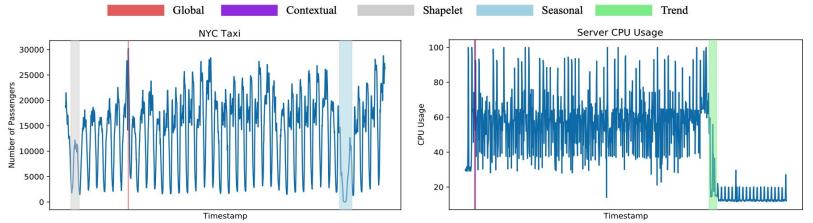
Time Series Outliers are Complex

• Misleading labeled benchmark datasets create illusion for the progress of time series outlier detection problem [1].



Synthetic Dataset

- Using synthetic datasets for evaluation becomes a common practice.
 - In this way, we can easily isolate different types of outliers.
- Existing outlier definitions are confusing for synthesizing data Contextual -> Unknown context Collective -> No specific scenario Can we refine the outlier definitions for better benchmarking algorithms?



[1] Renjie Wu, Eamon Keogh, Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress, IEEE Transactions on Knowledge and Data Engineering, 2021

DATA Lab at Rice University

Our Proposal: Behavior-driven Outlier Taxonomy

• Time Series Behaviors:

$$X = \underbrace{(x_1, x_2, \cdots, x_t)}_{\text{Point-wise Behavior}} = \underbrace{\rho(2\pi\omega T)}_{\text{Pattern-wise Behavior}} + \tau(T)$$
Point-wise Outliers: $|x_t - \hat{x}_t| > \delta$
Global Outlier: $\delta = \lambda \cdot \sigma(X)$
Contextual Outlier: $\delta = \lambda \cdot \sigma(X_{t-k,t+k})$
Pattern-wise Outliers: $s(X_{i,j}, \hat{X}_{i,j}) > \delta$
Shapelet Outlier: $s(\rho(.), \hat{\rho}(.)) > \delta$
Seasonal Outlier: $s(\omega, \hat{\omega}) > \delta$
Trend Outlier: $s(\tau(.), \hat{\tau}(.)) > \delta$
General Outlier: $s(\tau(.), \hat{\tau}(.)) > \delta$
Time Series Outliers
Global Contextual Collective Global Contextual Shapelet Seasonal Trend

DATA Lab at Rice University

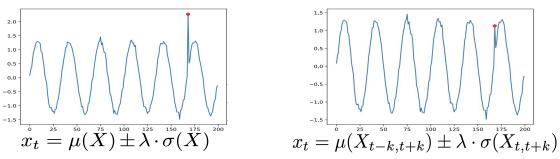
Daochen Zha (daochen.zha@rice.edu) 6

/ ____ \

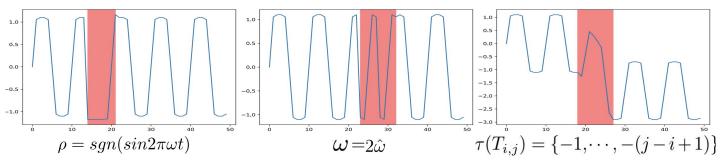
Synthetic Criteria for Time Series Outliers

• Synthetic Criteria

• Point-wise Outlier: Defining range of context.

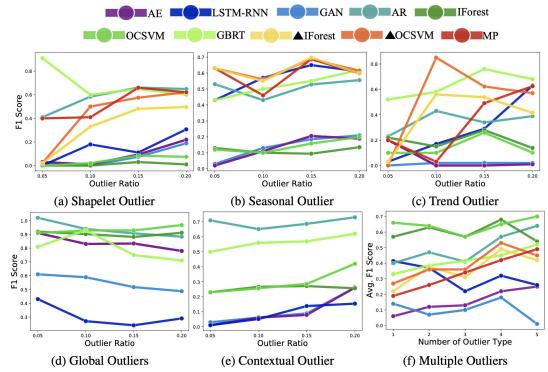


• Pattern-wise Outliers: Selecting ho, ω , au



Benchmarking Existing Algorithms

Benchmark on Synthetic Datasets



• Key Observations:

- Classical Algorithms > Deep Algorithms.
- Difficulty in Point-wise:

Contextual >> Global.

• Difficulty in Pattern-wise:

Seasonal > Trend > Shapelet.

Benchmarking Existing Algorithms

Benchmark on Real-world Datasets

	Dataset (Best) Metrics			CICIDS Precision Recall F1		GECCO Precision Recall F1		SWAN-SF Precision Recall F1	
Prediction-based	AR GBRT LSTM-RNN	0.113	0.652 0.192 0.657 0.193 0.110 0.007	0.016 0.018 0.024	0.310 0.030 0.351 0.034 0.383 0.046	0.175	0.314 0.349 0.140 0.156 0.275 0.305	0.447	0.354 0.385 0.375 0.408 0.221 0.312
Majority Modeling	IForest OCSVM AutoEncoder	0.107	0.569 0.168 0.620 0.183 0.598 0.176	0.010 0.004 0.011	0.040 0.016 0.046 0.007 0.042 0.017	00107	0.353 0.391 0.743 0.296 0.340 0.377	0.474	0.598 0.583 0.498 0.485 0.522 0.509
Discords Analysis ——	▲IForest ▲OCSVM MatrixProfile	0.002	0.226 0.066 0.305 0.004 0.514 0.012	0.011 0.000 0.007	0.168 0.020 0.000 0.000 0.080 0.013	0.021	0.315 0.390 0.341 0.040 0.185 0.074	0.193	$\begin{array}{c} 0.425 \ 0.416 \\ 0.001 \ 0.001 \\ 0.175 \ 0.171 \end{array}$

• Key Observations:

- Classical Algorithms > Deep Algorithms.
- Subsequence clustering (▲) is not robust under concentration assumption.

Take Home Messages

• In this work, we identify that

- Existing taxonomy of outlier definition is not applicable for time series data.
- Unclear outlier definition may lead to confusing labeled data.

• To tackle the problem

- A new taxonomy by observing the data from **point** and **pattern** of views.
- Categorize time series outliers into global, contextual, trend, seasonal and shapelet outliers.
- Formal definition of individual types of outliers to create synthetic criterias for benchmarking existing algorithms and future data labeling.

• From the benchmark, we further find out that

- Classical algorithms generally outperform Deep Learning algorithms.
- The difficulty of individual types of outliers can be ranked as
 - Point-wise: Contextual >> Global
 - Pattern-wise: Seasonal > Trend > Shapelet.

RICE UNIVERSITY School of Engineering Department of Computer Science

Thank You!

Contact

Kwei-Herng Lai (<u>khlai@rice.edu</u>) Daochen Zha (<u>daochen.zha@rice.edu</u>) Junjie Xu (<u>imx5097@psu.edu</u>) Yue Zhao (<u>zhaoy@cmu.edu</u>) Guanchu Wang (<u>hegsns@rice.edu</u>) Xia Hu (<u>xiahu@rice.edu</u>)

DATA Lab at Rice University

Daochen Zha (daochen.zha@rice.edu) 11