Towards Automated Imbalanced Learning with Deep Hierarchical Reinforcement Learning

Daochen Zha, Kwei-Herng Lai, Qiaoyu Tan, Sirui Ding, Na Zou, Xia Hu

Rice University
Texas A&M University
• **Imbalanced Classification Problem**
 - There is a disproportionate ratio of training samples in each class.
 - # of majority instances \gg # of minority instances.
 - Classifiers tend to be dominated by the majority class and perform poorly on the minority class.

• **Over-Sampling**
 - One effective way to tackle data imbalance is over-sampling.
 - It generates new synthetic samples for the minority class.
 - SMOTE is the most popular over-sampling technique.
How does SMOTE Work?

- SMOTE Iteratively Execute the Following:
 - Randomly pick a minority instance.
 - Find the nearest minority neighbors of this instance and randomly pick a neighbor.
 - Perform linear interpolation between the selected instance and the neighbor to generate a new sample.

The synthetic instance interleaves with majorities!
SMOTE Variants

• Many Ideas Have been Explored
 • At least 85 SMOTE variants as of the year of 2019 [1].
 • ADASYN [2] generates more synthetic samples for the instances that are harder to learn, which is quantified by the ratio of the majority instances in the nearest neighbors.
 • BorderlineSMOTE [3] and SVMSMOTE [4] only over-sample the minority instances in the borderline.
 • ANS [5] proposes to adapt the number of neighbors needed for each instance.
 • However, the existing SMOTE variants heavily rely on the heuristics to perform over-sampling.

• **Research Question**
 • Given a dataset and a base classifier, how can we optimize the over-sampling strategy such that the trained classifier can achieve the best generalization performance?
Challenges

• How to Optimize?
 • The sampling is independent of the classifier so that it can only indirectly impact the performance. We need an effective mechanism to fill this gap so that the sampling strategy can be learned.

• How to Deal with the Huge Decision Space?
 • the number of generated samples can be arbitrarily large, and each synthetic sample can be anywhere in the feature space.

• How to Perform Hierarchical Reasoning?
 • At the high level, we decide the over-sampling ratio, i.e., how many synthetic samples should be generated.
 • At the low level, we decide where the synthetic samples should be located.
 • The low-level decision depends on the high-level decision in that the optimal locations of the samples may differ for different numbers of samples
AutoSMOTE Framework

• **Hierarchical Reinforcement Learning**
 - High-level policy: it decides how many synthetic instances will be generated for each instance.
 - Low-level policy: it decides how the interpolation is performed.
AutoSMOTE Framework

- Sampling Process
AutoSMOTE Framework

• Training

Algorithm 2 Training of AutoSMOTE

1: Input: $\pi_h^{(1)}, \pi_h^{(2)}, \pi_I, X^{\text{min}}, G_1, G_2, K$, total number of iterations
 I, three buffer sizes $B_h^{(1)}, B_h^{(2)},$ and B_I
2: Initialize three queue buffers $B_h^{(1)}, B_h^{(2)}, B_I$
3: for iteration = 1, 2, ..., I do
4: Generate samples following Algorithm 1 and store the generated episodes to $B_h^{(1)}, B_h^{(2)}$ and B_I
5: Train on the augmented training data, get reward on validation data, and set the final steps of all the episodes to be the obtained reward with all the intermediate rewards as 0
6: if $\text{size}(B_h^{(1)}) \geq B_h^{(1)}$ then
7: Pop out $B_h^{(1)}$ steps of data and update $\pi_h^{(1)}$ with Eq. 2
8: end if
9: if $\text{size}(B_h^{(2)}) \geq B_h^{(2)}$ then
10: Pop out $B_h^{(2)}$ steps of data and update $\pi_h^{(2)}$ with Eq. 2
11: end if
12: if $\text{size}(B_I) \geq B_I$ then
13: Pop out B_I steps of data and update π_I with Eq. 2
14: end if
15: end for

Cross-Instance Sub-Policy
Instance-Specific Sub-Policy
Low-level Policy
Experiments

Datasets

Dataset statistics with imbalanced ratios of 20/50/100

<table>
<thead>
<tr>
<th>Dataset</th>
<th># Majorities</th>
<th># Minorities</th>
<th># Features</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phoneme</td>
<td>3818</td>
<td>190/76/38</td>
<td>5</td>
<td>Audio</td>
</tr>
<tr>
<td>PhishingWebsites</td>
<td>6157</td>
<td>307/123/61</td>
<td>68</td>
<td>Security</td>
</tr>
<tr>
<td>EEGEyeState</td>
<td>8257</td>
<td>412/165/82</td>
<td>14</td>
<td>EEG</td>
</tr>
<tr>
<td>Mozilla4</td>
<td>10437</td>
<td>521/208/104</td>
<td>5</td>
<td>Product defect</td>
</tr>
<tr>
<td>MagicTelescope</td>
<td>12332</td>
<td>616/246/123</td>
<td>10</td>
<td>Telescope</td>
</tr>
<tr>
<td>Electricity</td>
<td>26075</td>
<td>1303/521/260</td>
<td>14</td>
<td>Electricity</td>
</tr>
</tbody>
</table>
Experiments

• **Base Classifiers**
 • SVM, KNN, DecisionTree, AdaBoost

• **Metrics**
 • Macro-F1, MCC
 • Average rank across the 12 settings (4 classifier x 3 imbalanced ratios)
Experiments

- **Comparison with the State-of-the-Art Samplers**

<table>
<thead>
<tr>
<th>Category</th>
<th>Method</th>
<th>Dataset</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ClusterCentroids</td>
<td>13.250 ▲ 14.58 ▲ 19.50 ▲ 19.58 ▲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CondensedNearestNeighbour</td>
<td>16.620 ▲ 17.46 ▲ 16.92 ▲ 16.96 ▲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EditedNearestNeighbours</td>
<td>14.170 ▲ 15.42 ▲ 11.83 ▲ 12.42 ▲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RepeatedEditedNearestNeighbours</td>
<td>14.710 ▲ 17.04 ▲ 15.29 ▲ 15.96 ▲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AllKNN</td>
<td>14.040 ▲ 14.56 ▲ 13.46 ▲ 13.46 ▲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NearMiss</td>
<td>24.420 ▲ 24.75 ▲ 24.17 ▲ 24.42 ▲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NeighbourhoodCleaningRule</td>
<td>16.330 ▲ 17.83 ▲ 13.08 ▲ 13.25 ▲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OneSidedSelection</td>
<td>17.210 ▲ 18.21 ▲ 11.08 ▲ 10.67 ▲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RandomUnderSampler</td>
<td>12.500 ▲ 10.00 ▲ 17.42 ▲ 17.58 ▲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TomekLinks</td>
<td>16.850 ▲ 17.46 ▲ 10.04 ▲ 9.38 ▲</td>
<td></td>
</tr>
<tr>
<td>Over-sampling</td>
<td>RandomOverSampler</td>
<td>6.750 ▲ 8.37 ▲ 12.33 ▲ 12.75 ▲ 5.00 ▲ 5.58 ▲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMOTE</td>
<td>7.250 ▲ 8.67 ▲ 10.42 ▲ 10.67 ▲ 7.00 ▲ 6.67 ▲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMOTEN</td>
<td>16.830 ▲ 18.25 ▲ 10.71 ▲ 10.54 ▲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADASYN</td>
<td>7.330 ▲ 8.00 ▲ 9.75 ▲ 9.58 ▲ 7.50 ▲ 8.17 ▲</td>
<td></td>
</tr>
<tr>
<td>Combined over- and under-sampling</td>
<td>SMOTEENN</td>
<td>6.250 ▲ 6.50 ▲ 14.67 ▲ 14.50 ▲ 7.17 ▲ 6.92 ▲ 10.75 ▲ 10.08 ▲ 8.00 ▲ 7.42 ▲ 9.75 ▲ 9.67 ▲ 9.43 ▲ 9.18 ▲</td>
<td></td>
</tr>
<tr>
<td>Auto-sampling</td>
<td>AutoSMOTE</td>
<td>5.750 ▲ 4.58 ▲ 6.50 ▲ 7.67 ▲ 4.00 ▲ 4.75 ▲ 3.67 ▲ 4.96 ▲ 5.75 ▲ 7.00 ▲ 2.67 ▲ 3.25 ▲ 4.72 ▲ 3.37 ▲</td>
<td></td>
</tr>
</tbody>
</table>
Experiments

• Ablation Study
Experiments

• Visualization
Summary and Takeaways

• Contributions
 • We investigated AutoML for over-sampling for imbalanced classification.
 • We proposed AutoSMOTE, which samples synthetic instances with deep hierarchical reinforcement learning.
 • Extensive experiments demonstrated that AutoSMOTE outperforms the state-of-the-art over-sampling algorithms.

Paper

Code