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Time-Series Classification (TSC) Problem

¢ Problem setting
® Given a collection of time-series with the attached labels, TSC aims to train a classifier
to classify unseen time-series.

e Main challenge
® How to model and incorporate the temporal information in the classification?
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Existing Solutions

e Existing studies approach TSC in two major directions

® Similarity-based: Combine a k-NN classifier with a similarity measure for classification.
* Deep learning: Perform end-to-end training on the raw time-series and learn the
representations to do classification.
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Source: https://commons.wikimedia.org/wiki/File:Euclidean_vs_DTW.jpg Source: https://arxiv.org/pdf/1809.04356.pdf
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Motivation

e Preliminary experiments

® WWe compare DTW (a representative similarity-based method) and ResNet (a

representative deep learning approach) on the full 128 UCR datasets. We report the
average ranks. The lower the better.
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Average ranks of ResNet and DTW on the full 128 UCR datasets, where
different numbers of labels per class is given.
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Research Question and Challenges

e Our research question

® Can we connect the two research lines in such a way as to jointly model time-series
similarities and learn the representations?

e Challenges

® How can we incorporate similarity information into representation learning?
« Even though we can enable similarity in deep learning models, how can we balance
similarity information and the original representation learning?
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SimTSC Framework

e Our simple yet effective solution

® \We propose Similarity-Aware Time-Series Classification (SImTSC) framework based on
Graph Neural Networks.

» Time-series -> node

« Similarity of time-series -> edge

» TSC -> node classification
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Each time-series is first processed by a backbone, and enhanced by GNN with aggregation.
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Our Instantiation

e Backbone
® We use ResNet as the backbone since it has strong performance.

e Similarity Measure
® \We use DTW as the the similarity measure because it is the most popular one.

e Graph Neural Networks
® \We use Graph Convolutional Networks (GCN) because it is the most basic one.
® We only use 1-layer GCN. We find that it delivers the best performance.

e Other Tricks

® \We use negative sampling to sample a half batch of labeled time-series and a half
batch of unlabeled time-series.
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Results on Univariate Time-Series

e Experimental Setting

® We compare SimTSC with the existing similarity-based and deep learning methods
on the full 128 UCR datasets. \We report average rank and Wilcoxon signed rank test
(p < 0.05) for the significance test.

Labels
W 1 5 10 15 20 25 30 35 40 45 50
Similarity
_based DTW 3.776 4.163 4.465AV 4.738AV  4.8241AV 5.048tAV 4.965tAV 5.160tAV 5.309tAV 5.199tAV 5.2111AV
[MLP || 5.5041AV 5.496TAV 5.4381AV 5.309TAV 5.316TAV 5.2561AV 5.367tAV 5.477tAV 5.195tAV 5.402tAV 5.348tAV
Deep FCN 4.630AV  4.310 4.383AV  4.508AV  4.723tAV 4.803tAV 4.699tAV 4.910tAV 4.773t1AV 4.883t1AV 4.852fAV
Learnin ™ |ResNet 4.8461AV 4.857TtAV 4.617tAV 4.047 4.449AV  4.039 4.102 4.090 4.086 3.840 3.895
g InceptionTime|| 5.4841AV 5.3021AV 5.4381AV 5.4341AV 5.215TAV 5.145TAV 5.168TAV 4.9141AV 4.9411AV 5.0661AV 5.039tAV
SimTSC-S 4.224A 4.278AV  4.074 4.277TAV  4.141AV  4.044V 4.148A 3.988 3.887 3.918 4.047
___—{SimTSC-I 3.724 3.817 3.793 3.836 3.746 4.031AV  3.762 3.734 3.852 3.867 3.797
Ours SimTSC-T 3.811 3.778 3.781 3.852 3.586 3.632 3.789 3.727 3.957 3.824 3.812
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Results on Multivariate Time-Series

e Experimental Setting

® We conduct experiments on 4 multivariate time-series classification tasks, including
Character Trajectories, ECG, KickVsPunch, and NetFlow.

. . Labels
S|m||ar|ty_based Dataset /m‘ 5 10 15 20 25 30 35 40 45 50
————

o .8474+.014 .8814.005 .895+.009 .900+.014 .908+.014 .907+.013 .906-£.010 .906+.007 .909+.010 .913-+.008
Deep Learning .8344.024 .8984.017 .920+.010 .937+.010 .939+.008 .941+.009 .949-+.008 .956+.011 .958+£.007 .958-£.007
e .883+.010 .9394.007 .947+.006 .968-:.006 .964+.003 .974+.005 .979+.003 .978+.005 .979+.001 .986--.003
Trajectories .894:£.020 .939+.009 .9494.007 .947+.017 .964+.011 .9754.003 .977+.011 .9754+.004 .9814.007 .9824.005
i .9144.012 .9444.009 .951+.015 .953+.012 .969+.011.978+.006.981+.007 .979+.005 .977+.008 .980+.003
/ i .903+.014 .946+.005.957+.011 .964£.009 .967+.012 .973+.009 .976+.009 .981-.006 .983--.008 .986--.004
Ours DTW 605+.124 .6704.086 .740+.112 .755+.103 .805+.043 .8254.050 .805+.053 .800+.057 .805+.053 .800-.057
ResNet 7454.048 .795+.037 .805+.058 .800+.079 .860+.030.855+.048 .850+.052 .855+.029 .830+.037 .870+.029
InceptionTime |.7504.045 .805+.033 .785+.020 .800+.037 .820+.037 .830+.043 .825+.016 .850+.027 .855+.0010 .850+.016
ECG TapNet 7704.043 .7804.012 .755+.025 .795+.048 .810+.037 .7954.029 .785+.025 .815+.037 .830+.019 .845+.024
SimTSC-S .7954.043 .8104.020 .855+.040.840-.051 .830+.056 .840+.020 .860-+£.041 .825+.047 .830+.071 .860+.025
SimTSC-I .790+.062 .7654.072 .830£.070 .730+.159 .740+.087 .8004.091 .830-+.048 .750+.052 .790+.108 .735+.108
SimTSC-T .810+.041.815+.046 .770+.108 .815+.115 .730+.118 .745+.075 .745+.099 .780+.051 .775+.071 .710+.101
DTW 4334.082 .4334.082 .433+.082 5 5 5 y ¢ . ,
ResNet 667+.183 .833+.149 .833+.183 . . = . . = -
InceptionTime |.667+.000 .533+.125 .567+.226 - - - - - - -
KickvsPunch{TapNet .700+.125 .767+.082 .733+.013 - - - - - - -
SimTSC-S .733+.200.767+.133 .867+.125 - = - - . . .
SimTSC-I 700+.125 .833+.105 .800+.125 - - - - . - -
SimTSC-T 600+.133 .767+.133 .767+.082 = = = . . « .
[DTW 6114.016 .559+.128 .607+.132 .595+.118 .546+.103 .5684.125 .523+.154 .481+£.203 .503+.217 .504+.214
ResNet 613+.074 .714+.063 .749+.022 .763+.038 .739+.058 .767+.050 .769-+.054 .767+.049 .787+.026 .797+.039
InceptionTime |.418+.052 .456+.046 .484+.058 .618+.049 .642+.036 .657+.024 .678+.014 .675+.036 .681+.018 .681+.015
NetFlow TapNet - - - - - - - - - -
SimTSC-S 519,108 .7204.071 .705.055 .709-.089 .738+.082 .7864.036 .765:.091 .790+.045 .784:£.063 .799-+.047
SimTSC-I .766+.043 .7884.036 .689+.139 .776:£.042 .731+.084 .7554.104 .834+.037 .798+.066 .810+.065 .839+.035
SimTSC-T .769+.052.805+.035.785+.101 .766+.095 .745+.092.825+.029 .801+.065 .827+.059 .847+.023 .852+.028
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Impact of the Number of GCN Layers

e Experimental Setting
® We vary the number of GCN layers when we have 10 or 20 labels
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e Observation

® One GCN layer achieves the best performance.
 Possibly because the graph is dense and more layers lead to over-smoothing.
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Visualization
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(a) ResNet (83% accuracy) (b) SimTSC (100% accuracy)
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Learned representations of ResNet and SImTSC on Coffee with 56 time-series. The two classes
are marked in blue and green. Only one time-series is labeled.
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Summaryand Q & A

e Takeaways

® SImTSC is a conceptually simple yet effective framework to join the research efforts of
similarity-based and deep learning methods for time-series classification.
® \We demonstrated the effectiveness of graph neural networks in time-series classification.

e Future Work

® | arger dataset, sparse graph, other tasks in time-series.
« Differentiable similarity learning.
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